摘要
在率相关与梯度塑性二阶耦合本构模型的基础上,提出了二、四阶率相关与梯度塑性耦合模型。采用简谐波的分析方法对材料的应变局部化及材料的稳定性进行了研究,得到了二、四阶耦合模型在一维情况下的内尺度律的变化及材料稳定性的关系,得到了波长变化的上下界及材料稳定性的条件;并对其进行了对比性研究,得到材料稳定点移动的规律。
Based on theoretic study and numerical calculation of second order rate dependent and gradient-dependent model, second and fourth order rate dependent and gradient-dependent model is put forward. Strain localization and stability of material by simple harmonic motion for new mixture model are studied. The laws of internal length scales and conditions of material stability are obtained at one dimension condition for new mixture model. At last, the influence of material stability for rate term and gradient term in the second and fourth order mixture model has been obtained.
出处
《计算力学学报》
CAS
CSCD
北大核心
2007年第6期751-755,共5页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金(50244015)
辽宁省自然科学基金(20032144)资助项目
关键词
应变局部化
内尺度律
稳定点
率相关与梯度耦合模型
strain localization
internal length scales
stability state
rate and gradient-dependent model