期刊文献+

区间B样条小波平面弹性及Mindlin板单元构造研究 被引量:9

A study of the construction of wavelet-based plane elastomechanics and mindlin plate elements using B-spline wavelet on the interval
下载PDF
导出
摘要 基于二维张量积区间B样条小波及小波有限元理论,构造了一类用于分析弹性力学平面问题和中厚板问题的C0型区间B样条小波板单元。在二维小波单元的构造过程中,传统多项式插值被二维区间B样条小波尺度函数取代,进而构造形状函数和单元。与小波Galerkin方法不同,本文构造的区间B样条小波单元通过转换矩阵将无明确物理意义的小波插值系数转换到物理空间。区间B样条小波单元同时具有传统有限元和B样条函数数值逼近精度高及多种用于结构分析的基函数的优点。数值算例表明:与传统有限元和解析解相比,本文构造的二维小波单元具有求解精度高,单元数量和自由度少等优点。 Based on two-dimensional tensor product B-spline wavelet on the interval (BSWI), a class of Co type plate elements was constructed to solve plane elastomeehanies and moderately thick plate problems. In the construction of two-dimensional wavelet-based elements, instead of traditional polynomial interpolation, the scaling functions of two-dimensional tensor product BSWI were em shape functions and construct BSWI elements. Unlike the process of direct wavelets a ployed to f dding in th orm the e wavelet-based Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansions was transformed into edges and internal modes via the constructed transformation matrix in this paper. The transformation matrix was the key to construct element freely as long as we can ensure its non-singularity. Because the good character of BSWI scaling functions, the method combines the versatility of the conventional finite element method (FEM) with the accuracy of B-spline functions approximation and various basis functions for structural analysis. Some numerical examples were studied to demonstrate the proposed method and the numerical results presented were in good agreement with the closed-form or traditional FEM solutions. The two-dimensional BSWI elements presented in this paper are useful to deal with high performance computation in engineering.
出处 《计算力学学报》 CAS CSCD 北大核心 2007年第6期869-875,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50505033 50335030) 973计划子项目(2005CB724100)资助项目
关键词 区间B样条小波 转换矩阵 平面弹性单元 Mindlin板单元 B-spline wavelet on the interval transformation matrix Plane elastomechanics element Mindlin plate element
  • 相关文献

参考文献16

  • 1COHEN A. Numerical Analysis of Wavelet Method [M]. Amsterdam : Elsevier Press, 2003.
  • 2DAHLKE S, DAHMEN W, HOCHMULTH R,et al. Stable multiscale bases and local error estimation for elliptic problems[J]. Appl Numer Math, 1997, 23 : 21-47.
  • 3何正嘉,陈雪峰.小波有限元理论研究与工程应用的进展[J].机械工程学报,2005,41(3):1-11. 被引量:26
  • 4CHEN X F,YANG S J,HE Z J,et al. The construction of wavelet finite element and its application[J]. Finite Elements in Analysis and Design, 2004, 40: 541-554.
  • 5CHEN W H, WU C W. Extension of spline wavelets element method to membrane vibration analysis[J]. Computational Mechanics, 1996,18(1) : 46-54.
  • 6BERTOLUZZA S, NALDI G, RAVEL J C. Wavelet methods for the numerical solution of boundary value problems on the interval. Wavelets: Theory, Algorithms, and Applications [M]. Chui C K, Montefusco, L, Puccio L. (eds.). London: Academic Press, Inc. , 1994.
  • 7CHUI C K,QUAK E. Wavelets on a bounded interval[J]. Numerical Methods of Approximation Theory,1992,1:53-57.
  • 8QUAK E, WEYRICH N. Decomposition and reconstruction algorithms for spline wavelets on a bounded interval[J]. Applied and Computational Harmonic Analysis, 1994,3 : 217-231.
  • 9GOSWAMI J C,CHAN A K,CHUI C K. On solving first-kind integral equations using wavelets on a bounded interval[J]. IEEE Transactions on Antennas and Propagation, 1995,43:614-622.
  • 10王勖成.有限单元法[M].北京:清华大学出版社,2002.

二级参考文献115

共引文献74

同被引文献64

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部