期刊文献+

基于神经网络的热力站换热器系统的预测控制 被引量:4

Prediction control simulation of heat substation system based on neural networks
下载PDF
导出
摘要 在利用实验法确定热力站换热器系统动态特性的基础上,提出利用神经网络预测控制器对热力站换热器系统进行控制,并进行阶跃扰动的控制仿真。结果表明,神经网络预测控制的效果要优于手动调节和传统的PID调节,适合时滞对象的动态调节。 The dynamic characters of the heat substation heat exchanger was achieved through the step-response experiment,and step-response control simulations of both the PID controller and NN prediction controller were presented.The results shows that the NN prediction controller has great superiority than PID controller in the time-lag system.
出处 《节能》 2007年第12期28-30,共3页 Energy Conservation
关键词 神经网络控制器 集中供热网 阶跃扰动 PID控制器 NN prediction controller district heating networks step response PID controller
  • 相关文献

参考文献4

  • 1Atli Benonysson, Benny Bohrn, Hans F Ravn. Operational optimization in a district heating system[J]. Energy Conversion & Management, 1995,36 (5) : 297 - 314.
  • 2Kambhampati C, Mason J D, Warwick K. A stable one -step-ahead predictive control of nonlinear systems[J]. Automatica, 2000,36: 485 - 495.
  • 3赵文峰,等.MATLAB工程应用丛书控制系统设计与仿真[M].西安:西安电子科技大学出版社,2003.
  • 4杨献勇.热工过程自动控制[M].北京:清华大学出版社,1999..

共引文献4

同被引文献19

  • 1张宏涛,祁静.热负荷预测的RBF神经网络预测方法研究[J].节能技术,2004,22(4):57-58. 被引量:3
  • 2牛建军,吴伟,陈国定.基于神经网络自整定PID控制策略及其仿真[J].系统仿真学报,2005,17(6):1425-1427. 被引量:43
  • 3薛四敏,朱万美,李连星,孙军,齐月华.合理利用天然气的途径[J].煤气与热力,2006,26(9):27-30. 被引量:6
  • 4汪浩,师奕兵,李焱骏.一种神经网络PID控制在燃料电池测试系统中的应用研究[J].测控技术,2007,26(2):41-43. 被引量:6
  • 5石兆玉.供热系统运行调节与控制[M].北京:清华大学出版社,1998..
  • 6Benonysson A, Bohm B, Ravn H F. Operational optimization in a district heating system[J]. Energy Conversion & Management,1995,36(5) :297 - 314.
  • 7Kenji K,Ryoko F,Takashi W. Joint angle control by FES using a feedback error learning controller [J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005,13 (3) : 359 - 371.
  • 8Meysar Z. Robust adaptive neural fuzzy oontroller with model uncertainty estimator for manipulators[ J ]. Trans- actions of the Canadian Society for Mechanical Engineering,2004,28(2) :197 - 219.
  • 9Y, shi, R, C, Eberhart. Fuzzy adaptive particle swarm optimization[ R], Korea: Proceeding of international conference on evolutionary computation,2001.
  • 10W. z. lu, H. y. fan, A. y. t. leung, et al. Analysis of pollutant levels in central HongKong applying neural network method with particle swarm optimization [J ]. Environmental Monitoring and Assessment ,2002:217- 230.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部