期刊文献+

自絮凝酵母SPSC01悬浮液的流变行为 被引量:3

Rheology of self-flocculating yeast suspensions of SPSC01
下载PDF
导出
摘要 用旋转黏度计测定了自絮凝颗粒酵母悬浮液的流变特性,并考察了其流变特性的影响因素,如菌体生物量、葡萄糖质量浓度、温度等。结果表明:自絮凝颗粒酵母悬浮液呈假塑性非牛顿流体,其流变特性服从幂律指数模型,随着菌体浓度的增大,稠度系数增大,流动行为指数减小;絮凝悬浮液的表观黏度随着糖浓度的增加有所增加,同一生物量下稠度系数k随着糖浓度的增加而增加,流动行为指数n随着糖浓度的增加变化很小,悬浮液的表观黏度随着温度的升高而降低;相同生物量下的流变指数随温度的升高而升高,而稠度系数随温度升高有所下降。 Rheological behaviors of self-flocculating yeast suspensions were investigated using a rotating cylinder viscometer. Effects of factors, such as biomass concentrations, glucose contents and temperature on the rheological properties were also investigated. Experimental results revealed that the self-flocculating yeast suspensions were pseudoplastic non-Newtonian fluid when the biomass concentration was higher than 15 g/L and the rheological characteristics could be expressed by power-law index model. The consistency coefficient k increased and the flow behavior index n decreased with the increase of biomass concentration. The self-flocculating yeast suspensions behaved Newtonian when the biomass concentrations was less than 15 g/L. The apparent viscosity and the consistency index k of the self-flocculating yeast suspension increased and the flow behavior index n decreased when the sugar concentration was increased at a constant biomass concentration. The apparent viscosity and the consistency index k of the self-flocculating yeast suspension decreased and the flow behavior index n increased when temperature was increased for a constant biomass concentration.
出处 《生物加工过程》 CAS CSCD 2007年第4期37-43,共7页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学基金资助项目(20576017)
关键词 自絮凝颗粒酵母 流变特性 非牛顿型流体 剪切速率 self-flocculating yeast rheological properties non-Newtonian fluid shear rate
  • 相关文献

参考文献4

二级参考文献16

共引文献76

同被引文献39

  • 1葛旭萌,俞路,赵心清,白凤武,安利佳.自絮凝酵母颗粒的在线检测与定量表征[J].化工学报,2005,56(2):306-311. 被引量:8
  • 2鲍建芝,李杰,张晓艳,陈尧,曹云峰,卢华,安志强,董荣梅.头孢菌素C发酵液流变特性的研究[J].中国抗生素杂志,2006,31(7):392-394. 被引量:7
  • 3Thomas KC, Hynes SH, Ingledew WM. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation. Process Biochem, 1996, 31(4): 321-331.
  • 4Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv, 2008, 26(1): 89-105.
  • 5Devantier R, Pedersen S, Olsson L. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol, 2005, 68(5): 622-629.
  • 6Alfenore S, Cameleyre X, Benbadis L, et al. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol, 2004, 63(5): 537-542.
  • 7O'Brien DJ, Craig Jr JC. Ethanol production in a continuous fermentation/membrane pervaporation system. Appl Microbiol Biotechnol, 1996, 44(6): 699-704.
  • 8Bisson, LF. Stuck and sluggish fermentations. Am J Enol Vitic, 1999, 50(1): 107-119.
  • 9Thomas KC, Ingledew WM. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mash. Appl Environ Microbiol, 1990, 56(7): 2046-2050.
  • 10Reddy LVA, Reddy OVS. Rapid and enhanced production of ethanol in very high gravity (VHG) sugar fermentation by Saccharomyces cerevisiae: role of finger millet (Eleusine coracana L.) flour. Process Biochem, 2006, 41(3): 726-729.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部