期刊文献+

Integral型Lupas-Bézier算子的收敛阶 被引量:2

Rate of Convergence of the Integral Type Lupas-Bézier Operators
下载PDF
导出
摘要 在Zeng等人对函数f的Integral型Lupas-Bézier算子在区间[0,∞)上收敛于α+11f(x+)+αα+1f(x-)的收敛阶进行研究的基础上,利用基函数的概率性质等方法,对其所给的积分型Lupas-Bézier算子收敛阶估计结果作进一步的改进,得到其收敛阶的精确估计. In this paper, the rate of convergence of Integral type Lupas-Bézier operaters for functions and an accurate estimation of coefficient are studied. The result improves that of Zeng by making use of probable property of basic functions.
出处 《泉州师范学院学报》 2007年第6期1-4,共4页 Journal of Quanzhou Normal University
基金 福建省自然科学基金资助项目(2007J0188)
关键词 Integral型Lupas—Bézier算子 收敛阶 估计 Integral type Lupas-Bézier operator rate of convergence estimation
  • 相关文献

参考文献7

  • 1ZENG X M,WANG T. Rate of convergence of the integral type Lupas-Bezier operators[J]. Kyungpook Mathematical Journal, 2003, 43(4) :593-604.
  • 2GUPTA V,PANT R P. Rate of convergence for the modified Szdsz-Mirakyan operators on functions of bounded variation[J]. J Math Anal Appl, 1999(233) :476-483.
  • 3GUPTA V,ARYA K. On the rate of pointwise convergence of modified Baskakov type operators for functions of bounded variation[J].Kyungpook Math J, 1998(38) : 283- 291.
  • 4ZENG X M,GUPTA V. Rate of convergence of Baskakov-Bezier type operators[J]. Computers and Mathematics with Applications, 2002,44 (10/11) :1445-1453.
  • 5王平华,李志伟.积分型Szász-Bézier算子的逼近阶[J].泉州师范学院学报,2006,24(4):14-17. 被引量:1
  • 6沈晓斌,王平华.Durrmeyer-Bézier算子的收敛阶[J].上饶师范学院学报,2005,25(6):13-15. 被引量:2
  • 7B·M·佐洛塔廖夫.独立随机变量和的现代理论[M].陈宗询,译.福州:福建科学技术出版社,1996.

二级参考文献14

  • 1左苏丽,曾晓明.对于局部有界函数的积分型Szász-Bézier算子的逼近估计(英文)[J].数学研究,2004,37(1):29-34. 被引量:1
  • 2王绍钦,王平华.修正的Baskakov型算子的点态逼近性质[J].泉州师范学院学报,2004,22(6):23-27. 被引量:2
  • 3王平华.Bernstein-Bézier算子的点态逼近阶的估计[J].成都大学学报(自然科学版),2005,24(4):250-252. 被引量:3
  • 4Xiao-Ming Zeng and W.Z Chen.On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation[J].J.Approx Theory,2000,102:1-12.
  • 5V.Gupta and R.P.Pant.Rate of convergence for the modified Szasz-Mirakyan operators on functions of bounded variation[J].J.Math.Anal Appl.,1999,233:476-483.
  • 6Xiao-Ming Zeng and V.Gupta.Rate of Convergence of Baskakov-Bezier Type Operators[J].Computers and Mathematics with Applications,2002,14(10-11):1445-1453.
  • 7S.Guo,On the rate of convergence of the Durrmeyer operators for functions of bounded variation[J].J.Approx Theory,1987,51:183-192.
  • 8B.M.佐洛塔廖夫.独立随机变量和的现代理论[M].陈宗询译.福州:福建科学技术出版社,1996.
  • 9Zeng X M.On the rate of convergence of the generalized Szász type operators for bounded variation functions[J].J.Math.Anal.Appl.1998,(266):309-325.
  • 10Cheng F.On the rate of convergence of Bernstein Polynomials of functions of bounded variation[J].J.Approx.Theory,1983,(39):259-274.

共引文献1

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部