期刊文献+

形位误差包容评定的快速优化算法与实现 被引量:1

Efficient Algorithm and Implementation for Geometric Errors Enclosure Evaluation
下载PDF
导出
摘要 对形位误差评定理论及应用进行了研究,在建立形位误差评定的几何模型的基础上,分析了形位误差包容评定的特征,并建立了包容性拟合的线性规划数学模型;以最小条件和极差极小化理论作为形位误差评定的判别准则,实现了利用修正单纯形法对形位误差数学规划模型的优化求解。以圆度为例,通过对实际测量数据的误差评定,结果表明该方法具有收敛速度快、评定精度高、计算稳定等优点。该方法在实际工程中对其它形位误差的评定中也取得了较好的效果,体现了较好的通用性和实用性。 The theory of geometric error evaluation and its application was presented. Based on the geometric model of error evaluation, the features of the geometric error enclosure evaluation were analyzed, and the linear programming model was established. By taking the minimum condition criterion and the theory on minimizing extremal difference function as rules of geometric error evaluation, a revised simplex method for direct solution of the programming model was proposed. The method was verified with the roundness error evaluation. In addition, this designed method was used to other geometric error evaluation in practice. The theoretical analysis and experimental results show that, the proposed revised simplex method provides well accuracy on geometric error evaluation, which has high efficiency and stability and has good practicality and universality.
出处 《机床与液压》 北大核心 2007年第12期139-142,共4页 Machine Tool & Hydraulics
关键词 形位误差 修正单纯形法 包容评定 线性规划 Geometric error Revised simplex method Enclosure evaluation Linear programming
  • 相关文献

参考文献4

二级参考文献17

  • 1刘健 王晓明.鞍点规划与形位误差评定[M].大连:大连理工大学出版社,. 1996.
  • 2曾宪铮.形位误差测量[M].北京:国防工业出版社,. 1979.
  • 3[1]Fan K C, Lee J C. Analysis of minimum zone sphericity error using minimum potential energy theory[J].Precision Engineering, 1999, 23: 65-72.
  • 4[2]Wang M, Cheraghi S H, Masud A S M.Sphericity error evaluation: theoretical derivation and algorithm development[J]. IIE Transactions, 2001, 33: 281-292.
  • 5[3]Yan H T. A model-based approach to form tolerance evaluation using non-uniform rational B-spline[J].Robotics and Computer Integrated Manufacturing, 1999, 15: 283-295.
  • 6[4]American National Standard Institute. Mathematical Definition of Dimensional and Tolerancing Principles[A]. ANSI Standard Y14.5.1M. The American Society of Mechanical Engineers[C]. 1994.
  • 7[5]Li Sh Y. Fuzzy control, neural control and intelligent cybernetics[M]. Harbin: Harbin Institute of Technology press, 1998.
  • 8[6]Mitsuo G, Cheng R W. Genetic algorithms and engineering design[M]. Beijing: Beijing Science press, 2000.
  • 9熊有伦,计量学报,1987年,8卷,2期,126页
  • 10高延新.互换性与测量技术基础[M]哈尔滨工业大学出版社,1992.

共引文献63

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部