期刊文献+

人工免疫进化计算在故障检测中的应用

Application of Artificial Immune Evolutionary Computation in Fault Detection
下载PDF
导出
摘要 将人工免疫系统的克隆选择原理结合思维进化思想,提出了一种人工免疫进化计算模型。该模型中利用克隆选择原理对故障模式进行模式学习和识别,利用思维进化思想定义了免疫趋同算子和免疫异化算子来对抗体进行扩增和抑制。将其应用在模拟机组的状态识别,试验结果表明,所提出的模型对状态检测有较高的准确率。 In the mixture of the idea of Mind Evolutionary Gnputation (MEC) and the clonal selection principle of artificial immune system, a model of artificial immune evolutionary computing is proposed. The models can learn and recognue fault mode in clone selection theory , and the immune similarity operator to expend antibody and the immune dissimilation operator to restrain antibody are defined using the thought of mine evolutionary computing. The algorithm are used in state recognue of simulation machine unit. The experiment result shows that the algorithm has a better accuracy to state recognize.
出处 《茂名学院学报》 2007年第1期48-52,共5页 Journal of Maoming College
基金 广东省自然科学基金项目(05011905) 广东省科技计划项目(2004B16001179) 山西省留学回国人员基金项目资助(2004-18)
关键词 克隆选择 思维进化计算 状态识别 clonals election mine - evolutionary computation state recognization
  • 相关文献

参考文献5

  • 1De Castro L N,Von Zuben FJ.Clonal selection algorithm with entineering applications[M].Las Vegas,Nevada,USA:Proc GECCOOO,2000.
  • 2孙承意,谢克明.思维进化-高效率的进化计算方法[G]//中国科技大学.第三届全球智能控制与自动化大会论文集.合肥:中国科技大学出版社,2000:118-121.
  • 3Keming Xie,Changhua Mou,Gang Xie.The Multi-parameter Combination Mind-evolutionary-based Machine Learning and its Application[G]//SMC2000.Proceedings of 2000 IEEE International Conference on Systems,Man and Cybernetics.Nashville,Tennessee,USA:Music City Sheraton,2000:183-187.
  • 4宋丹,傅明.基于多种群的自适应免疫进化计算[J].控制与决策,2005,20(11):1251-1255. 被引量:4
  • 5张志涌.精通MATLAB6.5[M].北京:航空航天大学出版社,2003.

二级参考文献8

  • 1邹琳,夏巨谌,胡国安.基于实数编码的多种群并行遗传算法研究[J].小型微型计算机系统,2004,25(6):982-986. 被引量:21
  • 2Jiao L C, Wang L. A Novel Genetic Algorithm Based on Immunity[J]. IEEE Trans on System, Man, and Cybernetics, Part A: Systems and Humans, 2000, 30(5):552-561.
  • 3De Castro L N, Von Zuben F J. Learning and Optimization Using the Clonal Selection Principle [J].IEEE Trans on Evolutionary Computation, 2002, 6 (3) :239-251.
  • 4Mori K. Tsukiyama M. Fukuda T. Immune Algorithm and Its Application to Factory Load Dispatching Planning [A]. Proc of Japan USA Symposium on Flexible Automation[C]. Kobe, 1994:1343-1346.
  • 5Leandro Nde C, Timmis J. An Artificial Immune Network for Multimodal Function Optimization [A].Proc of the 2002 Int Conf on Evolutionary Computation[C]. Honolulu: IEEE, 2002: 699-704.
  • 6Sun C Y, Sun Y. Mind-evolution-based Machine Learning: Frame-work and Implementation of Optimization[A]. Proc of IEEE Int Conf on Intelligent Engineering Systemsg [C]. Vienna: IEEE Inc, 1998:355-359.
  • 7Fukuda T. Mori K, Tsukiama M. Parallel Search for Multi-modal Function Optimization with Diversity and Learning of Immune Algorithm[A]. Artificial Immune Systems and Their Applications[C]. Berlin: SpringerVerlag, 1999:210-220.
  • 8Srinivas M, Patnaik L M. Adapative Probabilities of Crossover and Mutation in Genetic Algorithm [J].IEEE Trans on Systems, Man, and Cybernetics, 1994,24(4) :656-667.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部