期刊文献+

一种新的基于交互多模型的序贯重要采样算法

A Novel Sequential Importance Sampling Algorithm Based on Interacting Multiple Model
下载PDF
导出
摘要 通过将交互多模型(IMM)算法和粒子滤波(SIS)算法结合,提出了一种新的IMM-SIS算法。在每个模型中,都有一个标准的粒子滤波器,模型之间的交互与传统的IMM一样。由于在新的算法中,每个模型中粒子滤波都保证固定数量的粒子,因此不会出现粒子退化和贫乏现象。仿真证明了新的IMM-SIS算法在收敛速度和精度方面都要优于传统的IMM-EKF算法。 A novel method for multiple model particle filtering for Markovian switching systems is introduced. This new method is a combination of the interacting multiple model (IMM) filter and particle filter. A regularized particle filter is running in every mode. The mixing and interaction is similar to that in a conventional IMM filter. Furthermore, the new method keeps a fixed number of particles in each mode, and therefore it avoids the particle degeneracy and impoverishment phenomenon. Simulations show that the tracking speed and accuracy of the IMM - SIS algorithm are better than those of the IMM - EKF.
出处 《电讯技术》 2007年第6期90-93,共4页 Telecommunication Engineering
关键词 机动目标跟踪 交互多模式模型 序贯重要采样 收敛速度 motive target tracking interacting multiple model (IMM) sequential importance sampling (SIS) convergence speed
  • 相关文献

参考文献6

  • 1Mazor E, Averbuch A, Bar - Shalom Y, et al. Interacting Multiple Model Methods in Target Tracking: a Survey [ J ]. IEEE Transon Aerosp Electron Syst, 1998,34 (1) :103 - 123.
  • 2Blom H A P, Bar Shalom Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coeficients[J]. IEEE Trans on Autom Control, 1988,33 (8) :780 -783.
  • 3Gordon N, Salmond D, Smith A. A Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [ J]. IEE Proceedings on Radar, Sonar and Navigation, 1993,140(2) :107 - 113.
  • 4Doucet A, de Freitas N, Gordon N. Sequential Monte Carlomethods in practice [ M ], New York: Springer, 2001.
  • 5Boers Y, Driessen J N. Interacting Multiple Model Particle Filter[ J ]. IEE Proc Radar Sonar Navig, 2003,150 ( 5 ) : 344 - 349.
  • 6辛云宏,王保平,杨万海.基于序贯重要采样算法的被动单站机动目标跟踪[J].西安电子科技大学学报,2005,32(5):820-824. 被引量:4

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部