期刊文献+

加入甲烷促进选择性非催化还原反应的实验研究 被引量:23

Experimental Investigations of Enhanced Selective Non-catalytic Reduction Reaction With Methane
下载PDF
导出
摘要 为研究甲烷对选择性非催化还原(SNCR)脱硝反应的影响作用,在沉降炉实验台上模拟锅炉烟道内的反应环境和烟气成分,在650~1150℃范围内,研究了微量甲烷对SNCR反应温度窗口、脱硝效率和氨泄漏的影响,以及甲烷在脱硝过程中的反应特性。实验结果表明,在SNCR反应过程中加入少量的甲烷,可以降低并拓宽其反应温度窗口,提高较低温度下的脱硝率。同时促进氨的反应活性,降低氨泄漏,提高氨利用效率。而且加入甲烷后脱硝反应速率加快,使反应所需时间缩短,但使最大脱硝效率稍有降低。增加脱硝反应中的喷氨量,可拓宽脱硝反应温度窗口并提高脱硝效率。脱硝反应中加入的甲烷在950℃左右基本消耗完,不产生二次污染。 To study the influences of methane on selective non-cataJytic reduction (SNCR), the condition of flue gas composition was simulated on a drop tube furnace test rig, and the influences of a few of methane on SNCR temperature window, NOx reduction efficiency and ammonia slip from 650℃ to 1 150 ℃ were investigated, as well as reactivity of methane. Experimental results indicate that a few of methane additive to SNCR reaction could depress and widen the reaction temperature window, and increase DeNOx efficiency at lower temperature. At the same time, ammonia reactivity is promoted and ammonia utility is improved which causes reduction of ammonia slip. Further more, the reaction speed would be fastened, and the residence time to complete reaction is shortened. However the maximal NOx reduction efficiency decreases a little. Increase of ammonia could widen the temperature window and enhance NOx reduction efficiency. Methane injected into SNCR reaction would be depleted at 950℃ bringing no second pollution.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第35期7-11,共5页 Proceedings of the CSEE
基金 国家重点基础研究发展规划基金项目(2006CB200305)。~~
关键词 选择性非催化还原 甲烷添加剂 脱硝 温度窗口 氨泄漏 selective non-catalytic reduction methane additive NOx reduction temperature window ammonia slip
  • 相关文献

参考文献17

  • 1叶代启.烟气中氮氧化物污染的治理[J].环境保护科学,1999,25(4):1-4. 被引量:19
  • 2周俊虎,杨卫娟,周志军,岑可法.选择非催化还原过程中的N_2O生成与排放[J].中国电机工程学报,2005,25(13):91-95. 被引量:41
  • 3Wenli D, Dam-Johansen K, φstergaard K. Widening the temperature range of the thermal DeNOx process. An experimental investigation[C]. The 23th Symposium (International) on Combustion, Pittsburgh, 1990:297-303.
  • 4Leckner B, Karlsson M, Dam-Johansen K, et al. Influence of additives on selective noncatalytic reduction of NO with NH3 in circulating fluidized bed boilers[J]. Industrial and Engineering Chemistry Research, 1991, 30(11): 2396-2404.
  • 5Lindstedt R P, Lochwood F C, Selim M A. A detailed kinetic study of ammonia oxidation[J]. Combustion Science and Technology, 1995, 108(44): 231-254.
  • 6Zamansky V M, Lissianski V V, Maly P M, et al. Reactions of sodium species in the promoted SNCR process[J]. Combustion and Flame, 1999, 117(4), 821-831.
  • 7Seungmoon L, Kwinam P, Jin-won P, et al. Characteristics of reducing NO using urea and alkaline additives[J]. Combustion and Name, 2005, 141(3): 200-203.
  • 8Hemberger R, Muris S, Pleban K U, et al. An experimental and modeling study of the selective noncatalytic reduction of NO by ammonia in the presence of hydrocarbons[J]. Combustion and Flame, 1994, 99(3-4): 660-668.
  • 9Skreiberg φ, Kilpinen P, Glarborg P. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor[J]. Combustion and Flame, 2004, 136(4): 501-518.
  • 10Bae S W, Roh S A, Kim S D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process [J]. Chemosphere, 2006, 65(1): 170-175.

二级参考文献78

共引文献138

同被引文献311

引证文献23

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部