期刊文献+

LDPC编码的FPGA实现

Realization of FPGA for LDPC encoding
下载PDF
导出
摘要 低密度奇偶校验码(简称LDPC码)是目前距离香农限最近的一种线性纠错码,它的直接编码运算量较大,通常具有码长的二次方复杂度.为此,利用有效的校验矩阵,来降低编码的复杂度,同时研究利用大规模集成电路实现LDPC码的编码.在ISE 8.2软件平台上采用基于FPGA的Verilog HDL语言实现了有效的编码过程,为LDPC码的硬件实现和实际应用提供了依据. Low-density parity-check code( LDPC code) is a kind of linear error-correcting code nearest to Shannon Limit. For LDPC code, the computational overhead for direct encoding operations is large, as the complexity of encoding is the square of the length of eodeword. Hence, this paper reduces the complexity of coding by using effective parity-check matrix, and realizes the encoding device for LDPC code by use of large-scale integrated circuits. The effective encoding process based on FPGA with Verilog HDL language is implemented on ISE 8.2 software platform, providing a feasible basis for hardware implementation and practical application of LDPC code.
出处 《应用科技》 CAS 2007年第12期28-31,共4页 Applied Science and Technology
关键词 LDPC码 校验矩阵 FPGA实现 LDPC codes parity-check matrix FPGA realization
  • 相关文献

参考文献3

  • 1RICHARDSON T , UBRAKE R. Efficient encoding of low_density parity-check codes [ J ]. IEEE Trans Inform Theory, 2001, (2) :638 -656.
  • 2王鹏,王新梅.LDPC码的快速编码研究[J].西安电子科技大学学报,2004,31(6):934-938. 被引量:21
  • 3LEE DU, LUK W, WANG C, et al. A flexible hardware encoder for low-density parity-check codes [ A ]. IEEE Sym- posium on Field-Programmable Custom Computing Machines [ C ]. london, UK ,2004.

二级参考文献11

  • 1Divsalar D, Jin H, McEliece R J. Coding Theorems for "Turbo-like" Codes[DB/OL]. http://www.systems.caltech.edu/EE/Faculty/rjm/papers, 1998-09-21.
  • 2Gallager R G. Low-density Parity-check Codes[J]. IRE Trans on Inform Theory, 1962, 8(1): 21-28.
  • 3Gallager R G. Low Density Parity Check Codes[M]. Cambridge: MIT Press, 1963.
  • 4MacKay D J C, Neal R M. Near Shannon Limit Performance of Lo Density Parity Check Codes[J]. Electronics Letters, 1997, 32(18): 1645- 1646.
  • 5Tanner R M. A Recursive Approach to Low Complexity Codes[J]. IEEE Trans on Inform Theory, 1981, 27(5): 533-547.
  • 6Mackay D J C, Wilson S T, Davey M C. Comparison of Constructions of Irregular Gallager Codes[J]. IEEE Trans on Commun, 1999, 10(8): 1449- 1454.
  • 7Richardson T J, Urbanke R L. Efficient Encoding of Low-density Parity-check Codes[J]. IEEE Trans on Information Theory, 2001, 47(2): 638-656.
  • 8Luby M G, Mitzenmacher M, Shokrollahi M A, et al. Practical Loss-resilient Codes[A]. Proc 29th Annu Symp Theory of Computing[C]. Texas: ACM Press, 1997. 150-159.
  • 9Byers J W, Luby M, Mitzenmacher M, et al. A Digital Fountain Approach to Reliable Distribution of Bulk Data[DB/OL]. http://www.icsi.berkeley.edu/~luby/, 1998-09-04.
  • 10Jin H, Khandekar A, McEliece R J. Irregular Repeat-accumulate Codes[DB/OL]. http://citeseer.ist.psu.edu/jinooirregular.html/, 2000-01-08.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部