期刊文献+

基于离散惩罚粒子群算法的波纹管优化设计 被引量:1

Bellow optimum design based on discrete penalty particle swarm optimization
下载PDF
导出
摘要 以《美国膨胀节制造商协会标准》(EJMA)最新版为依据,建立了波纹管优化设计的数学模型。为获得波纹管优化设计的全局最优解,将粒子群算法与离散惩罚函数法相结合,构建了离散惩罚粒子群算法,并提出更新离散惩罚因子的策略。利用上述模型和方法,对公称直径400~1000mm的某系列U形波纹管进行优化设计,优化目标E/Q值比在线产品E/Q值提高了19.0%~99.1%,表明这种算法能有效地解决目前波纹管设计中存在的问题。 A reasonable mathematical model of bellow optimum design is established according to the newest standard of EJMA(Standards of the Expansion Joint Manufactures Association).A discrete penalty PSO(Particle Swarm Optimization) is proposed to gain the global optimum of bellow design in which discrete penalty function is employed and new updating scheme of discrete penalty factors is proposed.The proposed approach and mathematical models are examined by numerical examples.Comparing the optimum results with the products in-service,the objective function E/Q is increased by 19%~99.1%,and the optimum results are close to the theory solutions.It shows that the proposed approach is valid and the established mathematical model of bellow is correct,they can be used to solve the problem of bellow optimum design successfully and effectively.
机构地区 南京工业大学
出处 《石油机械》 北大核心 2007年第12期12-15,94,共4页 China Petroleum Machinery
基金 国家"863"高技术研究发展项目(2006aa042439)
关键词 波纹管 优化设计 离散惩罚粒子群算法 数学模型 bellow,optimum design,discrete penalty particle swarm optimization,mathematical model
  • 相关文献

参考文献9

  • 1杨玲,谢守勇,杨明金,刘峰,杨国才,陈建.膨胀节波纹管优化设计[J].农业机械学报,2006,37(9):153-156. 被引量:18
  • 2于颖 李永生.网格法在波纹管优化设计中的应用[J].压力容器,2006,:20-22.
  • 3于颖,李永生,於孝春,胡毅,陈立苏.波纹管的结构优化设计[J].压力容器,2005,22(12):22-24. 被引量:24
  • 4孙爱芳,刘敏珊,董其伍.基于CAE的U形波纹管膨胀节的工程优化设计[J].压力容器,2005,22(2):21-24. 被引量:12
  • 5Koh B K, Park G J. Optimization of bellows with general shape. Journal of Pressure Vessel Technology, Transactions of the ASME, 1998, 120 (4) : 325 -333
  • 6Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks - Conference Proceedings, 1995, (4) : 1 942 - 1 948
  • 7EJMA. Standards of the Expansion Joint Manufactures Association, Inc. Eighth Edition. 2003 and EJMA 2005 Addenda
  • 8Shi Y, Eberhart R C. Parameter selection in particle swarm optimization. Evolutionary programming Ⅶ. Lecture notes in computer science. Berlin, 1998, 1 447:591 -600
  • 9Shin D K. A penalty approach for nonlinear optimization with discrete design variables. Engineering Optimization, 1990, (16) : 29 -42

二级参考文献17

共引文献47

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部