期刊文献+

基于Adaboost算法的高速公路事件检测 被引量:4

Freeway Incident Detection Based on the Adaboost Algorithm
下载PDF
导出
摘要 本文介绍Adaboost方法的基本原理及算法;阐述了高速公路事件检测原理并进行了参数选择,确定了神经网络的结构,提出利用Adaboost方法进行高速公路事件检测并给出了该方法事件检测的算法步骤,最后进行了仿真实验。实验结果表明,该算法可以大大提高弱分类算法的性能,具有较高的检测率和较低的误报率,适于高速公路事件检测。 This paper describes the principle and algorithm of the Adaboost method. By introducing the principle of free- way incident detection and parameter choice, the topology of neural networks is employed in this paper, and an improved freeway incident-detection algorithm and the steps of its processing are presented based on the Adaboost algorithm. In addi- tion, a simulation experiment is conducted to test the feasibility and validity of this algorithm. The result of the experiment shows that this algorithm can highly enhance the performance of weak classification algorithms with a higher detection rate and a lower false alarm rate, which assesses the effectiveness of its application to freeway incident detection.
出处 《计算机工程与科学》 CSCD 2007年第12期95-97,共3页 Computer Engineering & Science
关键词 ADABOOST算法 高速公路事件 事件检测 检测原理 仿真实验 参数选择 神经网络 算法步骤 Adaboost freeway incident detecdon neural network class
  • 相关文献

参考文献9

  • 1王兆华,刘志强.视频检测技术在交通安全中的应用[J].交通运输工程与信息学报,2005,3(3):100-103. 被引量:17
  • 2Payne H J, Helfenbein E D, Knobel H C. Development and Testing of Incident Detection Algorithms: Volume 2-Research Methodology and Detailed Results[R]. Tehnieal Report. FHWA-RD-76-20, Federal Highway Administration, 1976.
  • 3Levin M, Krause G M. Incident Detection: A Bayesian Approach [J]. Transportation Research Record, 1978,682: 52- 581.
  • 4Perasnd B, Hall F L. Catastrophe Theory and Pattern in 30- second Freeway Traffic Data implication for Incident Detection [J]. Transportation Research, 1989,23A(2) : 103-113.
  • 5Ahmed S A, Cook A R. Application of Times-Series Analysis Techniques for Freeway Incident [J]. Transportation Research Record, 1982,841 : 19-211.
  • 6Teng Hualiang, Qi Yi. Application of Wavelet Technique to Freeway Incident Detection[J]. Transportation Research Part C: Emerging Technologies, 2003,11 (3-4) : 289-308.
  • 7吕琪,王慧.基于动态神经网络模型的交通事件检测算法[J].公路交通科技,2003,20(6):105-108. 被引量:18
  • 8Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning, Data Mining, Inference, and Prediction [M]. New York:Springer-Verlag, 2004. 210-242.
  • 9高朝晖,黄卫.高速公路交通管理系统的应用研究[J].公路交通科技,2000,17(4):44-46. 被引量:18

二级参考文献5

共引文献44

同被引文献19

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部