摘要
文章研究了一类线性对流占优扩散方程的初边值问题.采用了A.A.Samarskii构造差分格式的思想,对方程的扩散项进行修正,构造了线性对流占优扩散方程的显、隐式特征差分格式和C-N格式,三个格式的收敛阶均为O(+h2),利用Fourier方法分析论证了其稳定性和收敛性.
An initial-boundary value problem of convection-dominated diffusion equation is considered in this paper. The Samarskii's perturbation method is used to deal with the term of diffusion and the explicit, implicit and C- N schemes are proposed. The stability and convergence of the three schemes are discussed in this paper. Convergence and stability of difference scheme are proved in the order of O(τ + h^2).
出处
《南京晓庄学院学报》
2007年第6期7-10,共4页
Journal of Nanjing Xiaozhuang University
关键词
对流占优扩散方程
特征差分格式
收敛性
稳定性
convection-dominated diffusion equation
characteristics difference scheme
convergence
stability