摘要
Powder of Ti-46at.%Al was synthesized through mechanical activation (MA) for different milling times, and the 16 h MAed powder was sintered by using a spark plasma sintering (SPS) process at different sintering temperatures. The XRD profiles showed that the MAed Ti-46at,%Al powder for 12, 16, and 20 h contained initial α-Ti and Al phases, and that the SPSed TiAl alloys contained the gamma TiAl and α2-Ti3Al phases. The TEM showed two different types of regions in the 16 h MAed Ti-46at.%Al powder. One type consisted of only Al with a grain size about 80 nm, and the other type a mixture of Al and Ti with a grain size of 30 nm. According to the optical micrographs of MA-SPSed samples, the alloys sintered at higher temperatures showed a coarser microstructure. In the case of the 1473 Ksintering, typical duplex structures ((α2 +γ) lamella and γ phases) with interlamellar spacings of 50-400 nm and the grain size either less than 100 nm, or 1000 nm were observed.
Powder of Ti-46at.%Al was synthesized through mechanical activation (MA) for different milling times, and the 16 h MAed powder was sintered by using a spark plasma sintering (SPS) process at different sintering temperatures. The XRD profiles showed that the MAed Ti-46at,%Al powder for 12, 16, and 20 h contained initial α-Ti and Al phases, and that the SPSed TiAl alloys contained the gamma TiAl and α2-Ti3Al phases. The TEM showed two different types of regions in the 16 h MAed Ti-46at.%Al powder. One type consisted of only Al with a grain size about 80 nm, and the other type a mixture of Al and Ti with a grain size of 30 nm. According to the optical micrographs of MA-SPSed samples, the alloys sintered at higher temperatures showed a coarser microstructure. In the case of the 1473 Ksintering, typical duplex structures ((α2 +γ) lamella and γ phases) with interlamellar spacings of 50-400 nm and the grain size either less than 100 nm, or 1000 nm were observed.
基金
the High Technology Development Program of Hubei Province, China (No. 2001AA101B02).