期刊文献+

爆炸荷载作用下RC单向简支板的优化设计

Optimal design of RC panels against blast loads using energy-based approach
下载PDF
导出
摘要 目前,对爆炸荷载作用下的钢筋混凝土(RC)结构和构件的设计主要采用控制其动力响应最大位移的方法,例如TM-5和ASCE的试算法,类似于静力作用下的极限状态设计法,虽然过程简单,却无法获得最优化的设计。由RC板的抗力—挠度(R-y)曲线分析可知,曲线下方面积代表板在爆炸荷载作用下可能吸收的能量,直接体现RC板抵抗爆炸荷载的能力。采用TM-5和ASCE推荐的单自由度体系简化RC简支单向板,选用双折线模型计算RC板的R-y曲线,分析不同配筋率的R-y曲线下方面积,面积最大时的配筋率即为该设计的最佳配筋率,改变板的几何尺寸,按上述方法分别得出不同设计方案的最佳配筋率。爆炸荷载作用下必须考虑应变率对混凝土和钢筋的应力影响和材料非线性,不能直接应用静力计算中的矩形等效原则简化计算,研究采用分层法迭代求解R-y双折线的特征值。研究成果和分析方法对爆炸荷载作用下的RC板的结构设计和加固设计具有较高的指导价值。 Displacement-controlled approach is now being used by current guidelines such as TM5 and ASCE to design RC structures against blast loads. Although this method is easy to use, it may not obtain an optimal design. Actually the area under the resistance-deflection curve of a RC member represents its energy-absorption and thus a slab with different reinforcement ratios absorbs energy differently. The optimal reinforcement ratio for a slab corresponds to its maximum energy absorption capacity. A layered analytical model which allows for the varying strain rates over the cross-section was used to calculate a bilinear resistance-deflection relationship for a simply supported slab with different ratios so that the maximum energy absorption capacity of the slab as well as its optimal reinforcement ratio could be determined. Geometric size of the slab on the influence of the optimal reinforcement ratio was also investigated. The developed method is very useful to facilitate an optimal design to resist air-blast loads.
出处 《解放军理工大学学报(自然科学版)》 EI 2007年第6期645-651,共7页 Journal of PLA University of Science and Technology(Natural Science Edition)
关键词 爆炸荷载 RC板 能量吸收 应变率 分层法 最佳配筋率 优化设计 blast load reinforced concrete (RC)slab energy absorption strain rate layered method optimal reinforcement ratio optimized design
  • 相关文献

参考文献8

  • 1TM5-1300. Structures to resist the effect of accidental explosions [S]. US Department of the Army, Navy and Air Force Technical Manual, 1990.
  • 2American Society of Civil Engineers. Design of blast resistant buildings in petrochemical facilities [S]. ASCE, USA, 1997.
  • 3BIGGS J M. Introduction to structural Dynamics[M]. New York:McGraw-Hill Book Company, 1964.
  • 4WARNER R F, RANGAN B V,HALL A S,et al. Concrete structures [M]. South Melbourne: Aust Addison Wesley Longman Australia Pty Ltd, 1998.
  • 5DAY I, GLYNN C, MERRIGAN M, Retrofitting reinforced concrete members against blast loading using near surface mounted FRP [R]. Final Year Research Project Report, School of Civil and Environmental Engineering, the University of Adelaide, Australia : 2006.
  • 6LI Q, MEMG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003(40) :343-360.
  • 7MALVAR L J, CRAWFORD J E. Dynamic increase factors for steel reinforcing bars [M]. Orlando: Twenty-Eighth DDESB Seminar, 1998.
  • 8中华人民共和国国家标准,混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部