期刊文献+

基于what和where信息的目标检测方法 被引量:3

Object Detection Method Based on"What"and"Where"Information
下载PDF
导出
摘要 根据视觉系统两条通路理论,提出了一种基于what和where信息的目标检测方法.采用以环境为中心的where信息进行自顶向下的注意控制,指导what信息驱动的自底向上的注意.自顶向下的注意包括预注意和集中注意两个阶段,预注意依据where信息为特定目标出现与否提供先验,做出是否继续搜索的判定.集中注意的结果与what信息相结合,将注意指向目标最有可能出现的图像区域,并得到一系列样本显著区域.应用于多幅自然图像的实验结果证明了算法的有效性. Inspired by the theory of two visual pathways,a novel model for object detection is proposed based on"what"and"where"information.Context-centered"where"information is used to control top-down attention,and guide bottom-up attention which is driven by"what"information.The procedure of top-down attention can be divided into two stages:pre-attention and focus attention.In the stage of pre-attention,"where"information can be used to provide the prior knowledge of presence or absence of objects which decides whether search operation is followed.By integrating the result of focus attention with"what"information,attention is directed to the region that is most likely to contain the object and series of salient regions for samples are detected.Experimental results with natural images demonstrate its effectiveness.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第11期2055-2061,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60373029) 国家教育部博士点基金(N0.20050004001)
关键词 自顶向下的注意 where信息 what信息 目标检测 top-down attention "where"information "what"information object detection
  • 相关文献

参考文献19

  • 1Creem S H, Proffitt D R. Defing the cortical visual systems: “what”, “ where”, and “ how” [ J ]. Acta Psychologica, 2001, 107:43-68.
  • 2马尔著,姚国正,刘磊,汪云九译.视觉计算理论[M].北京:科学出版社,1988.1-5.
  • 3Itti L, Koch C. Computational modeling of visual attention[J]. Nature Reviews Neuroscience, 2001,2(3) : 194-230.
  • 4Itti L.Models of bottom-up attention and saliency[ A]. Neurobiology of Attention[ C]. San Diego, CA: Elsevier, 2005.576-582.
  • 5张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 6Frintrop S, Rome E. Simulating visual attention for object recognition[ A]. Proceedings of the Workshop on Early Cognitive Vision[ C]. Isle of Skye, Scotland, 2004.
  • 7Sun Y, Fisher R. Object-based visual attention for computer vision [ J ]. Artificial Intelligence, 2003,146 ( 1 ) : 77-123.
  • 8Ouerhani N. Visual attention: from bio-inspired modeling to real-time implementation [ D ]. Switzerland: Institute of Micro technology, 2003.
  • 9龙甫荟,郑南宁.一种引入注意机制的视觉计算模型[J].中国图象图形学报(A辑),1998,3(7):592-595. 被引量:7
  • 10Rybak I A, Gusakova V I, Golovan A V, Podladchikova L N, Shevtsova N A.A model of attention-guided visual perception and recognition[J]. Vision Research, 1998,38:2387-2400.

二级参考文献18

  • 1Bourque E, Dudek G, Ciaravola P. Robotic sightseeing: A method for automatically creating virtual environments. In: Giralt G, ed.Proc. of the IEEE Conf. on Robotics and Automation. Leuven: IEEE Press, 1998. 3186~3191.
  • 2Kadir T, Brady M. Saliency, scale and image description. International Journal of Computer Vision, 2001,45(2):83-105.
  • 3Gesu VD, Valenti C, Strinati L. Local operators to detect regions of interest. Pattern Recognition Letters, 1997,18(11-13):1077-1081.
  • 4Wai WYK, Tsotsos JK. Directing attention to onset and offset of image events for eye-head movement control. In: Huang T, ed.Proc. of the Int'l Association for Pattern Recognition Workshop on Visual Behaviors. Seattle: IEEE Press, 1994. 79~84.
  • 5Stentiford FWM. An evolutionary programming approach to the simulation of visual attention. In: Kim JH, ed. Proc. of the IEEE Congress on Evolutionary Computation. Seoul: IEEE Press, 2001. 851-858.
  • 6Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(11):1254-1259.
  • 7Itti L, Koch C. Computational modeling of visual attention. Nature Reviews Neuroscience, 2001,2(3):194-230.
  • 8Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging,2001,10(1):161-169.
  • 9Yee H, Pattanaik SN, Greenberg DP. Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. on Computer Graphics, 2001,20(1):39-65.
  • 10Boccignone G, Ferraro M, Caelli T. Generalized spatio-chromatic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(10): 1298-1309.

共引文献58

同被引文献34

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2杨海涛,常义林,王静,霍俊彦.一种基于亮度直方图的自动曝光控制方法[J].光学学报,2007,27(5):841-847. 被引量:47
  • 3Tsotsos J K.Analyzing vision at the complexity level[J].Behavioral and Brain Sciences,1990,13(3):423-469.
  • 4Fu H,Chi Z,Feng D.Attention-driven image interpretation with application to image retrieval[J].Pattern Recognition,2006,39(9):1604-1621.
  • 5Rothenstein A L,Tsotsos J K.Attention links sensing to recognition[J].Image Vision Computing.2008,26 (1):114-126.
  • 6Sun Y,Fisher R.Object-based visual attention for computer vision[J].Artificial Intelligence,2003,146(1):77- 123.
  • 7Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on PAMI,1998,20(11):1254-1259.
  • 8Shic F,Scassellati B.A behavioral analysis of computational models of visual attention[J].International Journal of Computer Vision,2007,73(2):159-177.
  • 9Hu Y Q,Rajan D,Chia L T.Detection of visual attention regions in images using robust subspace analysis[J].Journal of Visual Communication & hnage Representation,2008,19 (3):199-216.
  • 10Walther D,Koch C.Modeling attention to salient proto-objects[J].Neural Networks.2006,19(9):1395-140713 Vaisey J,Gersho A.Image compression with variable block size segmentation[J].IEEE Transactions on Signal Processing.1992,40(8):2040-2060.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部