期刊文献+

HollingⅢ型捕食者-食饵系统的动力学性质 被引量:3

Dynamical Behaviors in Predator-Prey Model of Holling Ⅲ
下载PDF
导出
摘要 研究具有HollingⅢ型功能反应函数的捕食者-食饵系统的动力学性质.得到了平衡点局部稳定和分支的充分条件,考虑了Hopf型周期解的存在性.并研究了在适当参数条件下,多重Hopf分支点的存在性. In this paper, the dynamical behaviors of a predator - prey model are investigated. The conditions of existence, local stability and bifurcation for the steady - states are obtained and the periodic solution of the Hopf type is put forward. The existence of multiple Hopf bifurcation point is also examined with suitable values of parameters.
出处 《昆明理工大学学报(理工版)》 2007年第6期103-107,124,共6页 Journal of Kunming University of Science and Technology(Natural Science Edition)
关键词 局部稳定性 HOPF分支 功能性反应 食饵-捕食者 local stability Hopf bifurcation functional response prey - predator model
  • 相关文献

参考文献12

  • 1Berryman A A. The Origins and Evolution of Predator - Prey Theory[J]. Ecology, 1997,73 : 1530 - 1535.
  • 2Kuang Y, Freedam H I. Uniqueness of Limit Cycles in Gause - Type Predator - Prey System [ J ]. Math Biosci, 1988,88:67 - 84.
  • 3Kuang Y. Nonuniqueness of Limit Cycles of Gause -Type Predator- Prey System[ J]. Appl Anal. , 1988, 29:269 -287.
  • 4Kuang Y. On the Location and Period of Limit Cycles of Gause - Type Predatorprey System[ J]. J Math Anal Appl, 1989, 142 : 130 - 143.
  • 5May RM. Stability and Complexity in Model Ecosystems[ M]. Princeton: University Press, 1973.
  • 6Holling C S. The Functional Response of Predators to Prey Density and Its Role in Mimicry and Population regulation [ J ]. Mem Ent Soc Can, 1965: 46:1 -60.
  • 7Leslie P H, Cower J C. The Properties of a Stochastic Model for the Predator - Prey Type of Interaction Between Two Species [J]. Biometrika, 1960:47:219-34.
  • 8Li Yi-long,, Xiao Dong-mei. Bifurcations of a Predator - Prey System of Holling and I_eslie Types [ J ]. Chaos, Solitons and Fractals,2007,34: 606 - 620.
  • 9Lin Yiping R. Dynamical Behaviors for a Three - Dimensional Differential Equation in Chemical System[ J]. Acta Mathematicae Applicatae Sinica, Apr,1996 ,12 :144 -154.
  • 10Marsden J E, Cracken M M. The Hopf Bifurcation and Its Applications[M]. Springer-Verlag, New York, 1976.

二级参考文献3

  • 1ARNOLD V I.Loss of stability of self-oscillations close to resonance and versal deformations for equivariant vector fields[J].Funct.Anal.Appl.1977,11:85-92.
  • 2LI J.Hilbert′s 16th problem and bifurcations of planar polynomial vector fields[J].Int,J.Bifurcation and Chaos,2003,13(1):47-106.
  • 3YE Y.Theory of Limit Cycles[J].Translations Mathematics Monographs,(American Mathematical Society,Providence.RI).1986,66.

同被引文献20

  • 1丁孝全,程述汉.一类具有时滞的比率依赖型捕食者-食饵系统周期正解的存在性(英文)[J].纯粹数学与应用数学,2006,22(1):111-117. 被引量:1
  • 2May R. Stability and Complexity in Ecosystem[M]. Princeton:Princetin University Press,1973.
  • 3Wiggins S. Introduction to Applied Nonlinear Dynamical System and Chaos[M].New York:Springer,1991.
  • 4Hale J K. Theory of Functional Diffential Equations [M]. New York:Springer-Verlag, 1997.
  • 5BERRYMAN A A. The origins and evolution of predator- prey theory [ J ]. Ecology, 1997,'73 : 1530 -1535.
  • 6陈兰孙,陈键.非线性生物动力系统[M].北京:北京科学出版社,1993.
  • 7LESLIE P H. Some further notes on the use of mat rices in population mathmatics [ J ]. Biometrika, 1948, 35: 213- 245.
  • 8LESLIE P H. A stochastic modle for studying the proper- ties of certain biological system by numerical methods [J]. Biometrika, 1958, 45: 16-31.
  • 9HOLLING C S. The functional response of predators to prey density and its role in mimicry and population regu- lation[J]. Mem Ent Soc Can, 1965,46:1-60.
  • 10LESLIE P H, GOWER J C. The properties of a stochastic model for the Predator-Prey type of interaction between two species [ J ]. Biometrika, 1960,47 : 219-34.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部