期刊文献+

最优多用户检测问题研究 被引量:4

A Study of Optimum Multiuser Detection Problem
下载PDF
导出
摘要 DS-CDMA无线通信中的最优多用户检测属于NP完备组合优化问题,启发式方法是求解这类问题的有效方法,通过分析最优多用户检测问题的适应值曲面特征,研究设计了系列低计算复杂度、接近最优多用户检测性能的启发式算法.仿真结果表明,基于演化策略的多用户检测算法能够在中等规模用户数情况下提供与最优多用户检测相当的性能,而快速迭代局域搜索算法能够以较低的计算复杂度得到比其他局域搜索算法更好的解. Optimum multiuser detection (OMD) is an NP-complete combinatorial optimization problem in DS-CDMA wireless communication systems and heuristics are efficient methods for solving such problems. By analyzing the fitness landscape of the OMD problem, a series of multiuser detection algorithms are presented, which have lower computational complexity and good performance. The evolution strategy (ES) algorithm can achieve the performance of the OMD bound, and the fast iterated local search (FILS) method can obtain much better solution than that of other correlative algorithms with lower computational complexity.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第12期2339-2342,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.60473081)
关键词 码分多址 多用户检测 适应值曲面 组合优化 CDMA Multiuser detection fitness landscape combinatorial optimization
  • 相关文献

参考文献10

  • 1S Verdu.Minimum probability of error for asynchronous gaussian multiple-access channels[ J ]. IEEE Transactions on Information Theory, 1986,32(1) :85 - 95.
  • 2D Fogel. Evolutionary Computation: The Fossil Record. Piscataway[ M ]. NJ: IEEE Press, 1998.
  • 3H Holger, S Thomas. Stochastic Local Search: Foundations and Applications[ M ]. San Fransisco: Morgan Kaufmann Publishers/Elsevier, 2004.
  • 4H Lim, M Rao, et al. Multiuser detection for DS-CDMA systerns using evolutionary programming [ J]. IEEE Communications Letters,2003,7(3) : 101 - 103.
  • 5S Wang,Q Zhu,L Kang. ( 1 + λ ) evolution strategy method for asynchronous DS-CDMA mulfiuser detection [ J ]. IEEE Communications Letters,2006,10(6) :423 - 425.
  • 6H Lim, B Venkatesh. An efficient local search heuristics for asynchronous multiuser detection [ J ]. IEEE Communications Letters,2003,7(6) :299 - 301.
  • 7S Verdu. Computational complexity of optimal multiuser detection[ J]. Algorithmica, 1989,4(3) : 303 - 312.
  • 8H Beyer, H P Schwefel. Evolution strategies: A comprehensive introduction[ J] .Natural Computing, 2002,1 ( 1 ) :3 - 52.
  • 9M Varanasi, Aazhang. Multi-stage detection in asynchronous code-division multiple access communications[ J]. IEEE Transactions on Communications, 1990, 38(8) :509 - 519.
  • 10P Merz, B Freisleben. Greedy and local search heuristics for unconstrained binary quadratic programming [ J ]. Journal of Heuristics, 2002,8(2) : 197 - 213.

同被引文献29

  • 1周丽,黄素珍.基于模拟退火的混合遗传算法研究[J].计算机应用研究,2005,22(9):72-73. 被引量:36
  • 2高洪元,刁鸣,王冰.基于免疫克隆选择算法的多用户检测技术研究[J].系统仿真学报,2007,19(5):983-986. 被引量:6
  • 3王小平 曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2000..
  • 4AAZMAN B. Nerual network for multi-user detection in code-division mutiple-access communication[J]. IEEE. TrailS.onComm, 1992,40(7): 1212- 1222.
  • 5ERGUN C, HACIOGIU K. Multi-user detection using a genetic algorithm in CDMA communications systems [J]. IEEE Trans Commun,2000,48(8): 1374-1383.
  • 6VERDU S. Minimum probability of error for asynchronous gaussian muhiple access channels[J]. IEEE Trans on Info. 1986,32(1):85-96.
  • 7S.Verdu. Minimum Probability of Error for Asynchronous Gaussian Multiple Access Channels [J]. IEEE Trans on Info, 1986, 32(1):85-96.
  • 8Ergun C,Haciogiu K.Multi-user detection using a genetic algorithm in CDMA communications syste- ms [J]. IEEE Trans Commun.2000, 48(8):1374-1383.
  • 9G.L.Chen, X.F.Wang, Z.Q.Zhuang. GeneticAIgorithm and Its Application[M]. Beijing: Posts & Telecom Press, 1996.
  • 10Abedi S,TafazolliR. Genetically modified multiuser detection for code division multiple accesssystems[J]. IEEEJSAC,2002,20(2):463-473P.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部