期刊文献+

基于偶数阶累积量的非圆信号测向方法 被引量:3

Direction Finding Algorithms for Noncircular Signals Based on Even Order Cumulants
下载PDF
导出
摘要 提出了基于2q阶累积量的非圆信号测向MUSIC(Multiple Signal Classification)算法(称为NC-2q-MUSIC),作为2q-MUSIC算法利用非圆信息的一种扩展,在可测向信号数、分辨力和测角精度等方面的性能均优于2q-MUSIC算法.并且,q越大,NC-2q-MUSIC算法的可测向信号数越大,分辨力越高,对模型误差也越不敏感.针对均布线阵(ULA:Uniform Linear Array)提出的NC-2q-MUSIC/ULA算法减小了计算量.仿真实验验证了NC-2q-MUSIC算法的优良性能. The NC-2q-MUSIC(Multiple Signal Classification)algorithm,which is an extension of the 2q-MUSIC algorithm to noncircular(NC )applications, is proposed. The performance of NC-2 q-MUSIC algorithm for noncircular signals is better than 2q- MUSIC algorithm due to the utilization of noncircular information of signals. The resolution and robustness to modeling errors of NC-2q-MUSIC algorithm become better with the increase of q. The computational complexity of the NC-2q-MUSIC algorithm is analyzed and the NC-2 q-MUSIC algorithm for uniform linear array(ULA), needs much less computation is also proposed. Simulation results show the better performance of NC-2q-MUSIC algorithm over 2q-MUSIC and validate other conclusions about NC-2q- MUSIC.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第12期2371-2375,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60502040)
关键词 阵列信号处理 测向 阵列扩展 累积量 MUSIC(Multiple Signal Classification) array signal processing direction finding aperture extension cumulants MUSIC (Multiple Signal Classification)
  • 相关文献

参考文献8

  • 1SCHMIDT R O. Multiple emitter location and signal parameter estimatio[ J ]. IEEE Trans AP, 1986,34 (3) : 276 - 280.
  • 2PORAT B, FRIEDLANDER B. Direction finding algorithms based on high-order statistics [ J ]. IEEE Trans SP, 1991, 39 (9) :2016 - 2023.
  • 3DOGAN M C,MENDEL J M. Application of cumulants to army processing-part Ⅰ: aperture extension and array calibration [J]. IEEE Trans SP, 1995,43(5) : 1200 - 1216.
  • 4CHEVALIF.R P, ALBERA L, FERREOL A, COMON P. On the virtual array concept for higher order array processing[ J]. IEEE Trans SP,2005,53(4) : 1254 - 1271.
  • 5CHEVALIER P, FERREOL A, ALBERA L. High resolution direction finding from higher order statistics: the 2q-MUSIC algorithm[J]. IEEE Trans SP,2006,54(8) :2986 - 2997.
  • 6ABEIDA H,DELMAS J P.MUSIC-like estimation of direction of arrival for noncircular sources[ J]. IEEE Trans SP, 2006,54 (7) :2678 - 2690.
  • 7CHARGE P, WANG Y, SAILLARD J. A noncircular sources direction finding method using polynomial rooting [ J ]. Signal Process,2001,81(6) : 1765 - 1770.
  • 8HAARDT M, ROMER F. Enhancements of unitary ESPRIT for non-circular sources [ A]. ICASSP2004-2 [ C]. Canada:IEEE, 2004. 101 - 104.

同被引文献27

  • 1武思军,张锦中,张曙.基于四阶累积量进行阵列扩展的算法研究[J].哈尔滨工程大学学报,2005,26(3):394-397. 被引量:12
  • 2陈建,王树勋.基于高阶累积量虚拟阵列扩展的DOA估计[J].电子与信息学报,2007,29(5):1041-1044. 被引量:22
  • 3M. C. Dogan and J. M. Mendel. Applications of cumulants to array processing -- Part Ⅰ : aperture extension and array calibration [ J]. IEEE Trans. SP. , 1995, 43(5) :1200 -1216.
  • 4B. Porat and B. Friedlander. Direction finding algorithms based on high-order statistics [ J]. IEEE Trans. SP. , 1991,39(9) :2016 -2024.
  • 5P. Chevalier, L. Albera and A. Ferreol et al. On the virtual array concept for higher order array processing [ J ]. IEEE Trans. SP. , 2005, 53(4) :1254 - 1271.
  • 6P. Chevalier, A. Ferreol and L. Albera. High resolution direction finding from higher order statistics : the 2q - MUSIC algorithm [ J]. IEEE Trans. SP. , 2006,54 ( 8 ) : 2986 - 2997.
  • 7P. Chevalier and A. Ferreol. On the virtual array concept for the fourth order direction finding problem [ J]. IEEE Trans. SP., 1999,47 (9): 2592 - 2595.
  • 8Schmidt R.Multiple emitter location and signal parameter esti-mation[J].IEEE Trans.on Antennas and Propagation,1986,34(3):276-280.
  • 9Roy R,Paulraj A,Kailath T.ESPRIT-A subspace rotation approach to estimation of parameters of eisoids in noise[J].IEEE Trans.on Acoustics,Speech and Signal Processing,1986,34(5):1340-1342.
  • 10Marcos S,Marsal A,Benidir M.The propagator method for source bearing estimation[J].Signal Processing,1995,42 (2):121-138.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部