期刊文献+

基于MKPLS和SQP方法的间歇过程迭代优化控制 被引量:4

Iterative optimal control for batch processes based on MKPLS and SQP methods
下载PDF
导出
摘要 采用多向核偏最小二乘(MKPLS)方法建立间歇过程的模型并进行操作条件的优化。由于存在模型失配和未知扰动,基于MKPLS模型的最优控制轨迹在实际对象上往往难以实现最优的产品质量指标。本文利用间歇过程批次间的重复特性与序贯二次规划(SQP)优化算法中迭代计算的相似特点,提出了一种基于MKPLS模型的批次间优化调整策略,使得经过逐步优化调整得到的控制轨迹作用于实际对象时,可以得到更优的质量指标。该方法的有效性在苯乙烯聚合反应器和乙醇流加发酵过程的仿真对象上得到了验证。 Multiway kernel partial least squares(MKPLS)can be used for modeling and optimal control of batch processes.But the calculated optimal control policy based on the model may no longer be optimal,when applied to the actual process due to model-plant mismatches and unknown disturbances.Based on the similar idea between repetitive batch runs and iterations during numerical optimization,a batch-to-batch optimization correction strategy coupled with MKPLS model and sequential quadratic programming(SQP)was proposed.During gradient calculation,the plant data,in place of the predictions of MKPLS model,were used to correct the iterative searching direction.The proposed strategy was illustrated by simulations of bulk polymerization of styrene and fed-batch ethanol fermentation.
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第12期3102-3107,共6页 CIESC Journal
基金 国家自然科学基金项目(60404012 60674064) 国家高技术研究发展计划项目(2006AA04Z168)~~
关键词 间歇过程 批次间优化 多向核偏最小二乘 序贯二次规划 batch processes batch to batch optimization MKPLS SQP
  • 相关文献

参考文献13

  • 1Bonvin D. Optimal operation of batch reactors a personal view. JournalofProcess Control, 1998, 8: 355.
  • 2Lee. K S, Chin S I, Lee J H. Model predictive control technique combined with iterative learning for batch processes. AIChEJournal, 1999, 4S: 2175.
  • 3Xiong Z H, Zhang J. A batchto batch iterative optimal control strategy hased on recurrent neural network models. Journal of Process Control, 2005, 15:11 21.
  • 4Flores CerriIlo J, MacGregor J H. Iterative learning control for final batch product quality using partial least squares models. Ind. Eng. Chem. Res., 2005, 44:9146.
  • 5Zafiriou E, Zhu J M. Optimal control of semi-batch processes in the presence of modeling error Proceedings of1990 American Control Conference. San Diego: IEEE Press, 1990:1644.
  • 6Dong D, McAvoy T J, Zafiriou E. Batch to-batch optimizalion using neural network models. Ind. Eng. Chem. Res., 1996, 35:2269.
  • 7Nomikos P, MacGregor J H. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30:97.
  • 8Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research. 2001, 2:97.
  • 9Kim K, Lee J, Lee I. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 2005, 79:22.
  • 10He Xiaorong(何小荣).Optimization in Chemical Processes(化工过程优化).Beijing:Tsinghua University Press,2003.

同被引文献41

  • 1谢磊,何宁,王树青.步进MPCA及其在间歇过程监控中的应用[J].高校化学工程学报,2004,18(5):643-647. 被引量:8
  • 2蒋丽英,王树青.基于MPCA-MDPLS的间歇过程的故障诊断[J].化工学报,2005,56(3):482-486. 被引量:8
  • 3李仁俊,韩正之.迭代学习控制综述[J].控制与决策,2005,20(9):961-966. 被引量:39
  • 4Gattu G, Zdriou E A. Methodology for on-line setpoint modification for batch reactor control in the presence of modeling error [J]. Chemical Engineering Journal, 1999, 75 (2) : 21-29.
  • 5Zhang Y, Dayadeep M J, Fraser F. Real-time optimization under parametric uncertainty: a probability constrained approach [J]. Journal of Process Control, 2009, 11 (2) : 373-389.
  • 6Haugwitz S, Akesson J, Hagander P. Dynamic start-up optimization of a plate reactor with uncertainties [J ]. Journal ofProcessControl, 2009, 19 (4): 686-700.
  • 7Chaehuat B, Srinivasan B, Bonvin D. Adaptation strategies for real-time optimization [J].Computers and Chemical Engineering, 2009, 33 (2): 1557-1567.
  • 8Kadam J V, Schlegel M, Srinivasan B, et al. Dynamic optimization in the presence of uncertainty: from off-line nominal solution to measurement-based implementation [J]. Journal of Process Control, 2007, 17 (5) : 389-398.
  • 9Li P, Arellano-Garcia H, Wozny G. Chance constrained programming approach to uncertainty [J]. Computers 2008, 32 (1/2): 25-45.
  • 10process optimization under and Chemical Engineering, Visser E, Srinivasan B, Palanki S,A feedback-based implementation scheme for batch process optimization [J]. Journal of Process Control, 2000, 10 (5) : 399-410.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部