摘要
本文基于最大散度差准则(MSDC),利用统计不相关投影空间,提出了一组具有统计不相关性的最佳鉴别矢量的计算方法。该方法的目标是寻求一组鉴别矢量集,既要使投影后的特征空间的类间散度最大,而类内散度最小;又要使最佳鉴别矢量之间具有统计不相关性。另外,本文还揭示了最大散度差鉴别准则与Fisher准则的内在关系。在ORL与NUST603人脸库上的实验结果表明,本文所提出的方法在识别性能上优于原MSDC特征抽取方法与传统的PCA方法。
Making use of the statistical uncorrelated projection space, a new method of statistically uncorrelated optimal discriminant vectors is presented in this paper based on the maximum scatter difference discriminant criterion. The uncorrelated optimal discriminant vectors are obtained by resolving the orthogonal vectors based on maximum scatter difference discriminant criterion in the uncorrelated projection space. The purpose of the method is to maximum the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection, and eliminate the statistically correlation between features. Besides, this paper reveals the relation between the maximum scatter difference discriminant criterion and Fisher criterion for feature extraction. Experimental results on ORL and NUST603 face database show the effectiveness of the proposed algorithm. The recognition rate of the method is superior to MSDC and PCP.
出处
《计算机科学》
CSCD
北大核心
2007年第12期157-160,共4页
Computer Science
基金
国家自然科学基金资助(编号:60472060)
关键词
最大散度差准则
统计不相关投影空间
最佳鉴别矢量
统计不相关
特征抽取
人脸识别
Maximum scatter difference criterion, Statistical uncorrelated projection space, Optimal discriminant vectors, Statistically uncorrelation, Feature extraction, Face recognition