期刊文献+

基于星型网络的分布式关联规则挖掘算法研究 被引量:6

Study of Star-based Distributed Association Rules Mining Algorithm
下载PDF
导出
摘要 随着Internet的迅猛发展,分布式数据库得到广泛应用。本文分析了一些主要的分布式数据挖掘算法的优缺点,提出了一种在星形结构下的分布式关联规则挖掘算法(SDAM)。该算法改进了FDM算法,具有通讯量低、并行性及可扩展性好等优点。 With the rapid development of Internet, distributed database has been become a broadly used environment. The advantage and disadvantage of the main distributed association rules mining algrithms are analyzed, a new distributed association rules mining algrithm based on star network struture is proposed. This algorithm has the advantage of high efficiency in communication, good extension in parallel computation.
出处 《计算机科学》 CSCD 北大核心 2007年第12期180-181,188,共3页 Computer Science
关键词 数据挖掘 关联规则 分布式数据库 并行计算 Data mining, Association rules, Distributed, Parallel computation
  • 相关文献

参考文献7

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD Conference on Management of data, 1993. 207-216
  • 2宋宝莉,覃征.分布式环境下关联规则的安全挖掘算法[J].计算机工程,2006,32(21):35-37. 被引量:6
  • 3陈涛,石伟胜,陈启买.关联规则的并行挖掘算法研究[J].现代计算机,2006,12(7):27-30. 被引量:1
  • 4Bayardo R, Agrawal R. Mining the most interesting rules. In: Proc. of the ACM SIGKDD Conf on knowledge Discovery and Data mining,San Diego,CA USA, 1999. 145-154
  • 5Cheung D W,han J,Ng V,et al. A fast distributed algorithm for mining association rules. In:Proc. 1996 Int Conf. Parallel and Distributed Information Systems. Miami Beach, Florida, Dec. 1996. 31-44
  • 6陈耿,倪巍伟,朱玉全,孙志挥.基于分布数据库的快速关联规则挖掘算法[J].计算机工程与应用,2006,42(4):165-167. 被引量:13
  • 7Schuster A, Wolff R. Communication-efficient Distributed Mining of Association Rules. In:Proc. 2001 ACM SIGMOD Int Conf. Santa Barbara,California,May 2001. 473-484

二级参考文献23

  • 1宋宝莉,覃征.分布式全局频繁项目集的快速挖掘方法[J].西安交通大学学报,2006,40(8):923-927. 被引量:11
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C].In :Proc ACM SIGMOD Int Conf Management of Date.Washington D C,1993:207-216.
  • 3Han J Kamber.MData Mining:Concepts and Techniques[M].Beijing: High Education Press,2001.
  • 4Goethals B.Survey on frequent pattern mining[R].Helsinki Institute for information Technology ,Technical report, 2003.
  • 5Park J S,Chen M S,Yu P S.Efficient parallel data mining for association rules[C].In:Proceedings of the 4th International Conference on Information and Knowledge Management, Baltimore. Maryland, 1995:31-36.
  • 6Agrawal R,Shafer J C.Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering,1996;8(6):962-969.
  • 7Cheung D W,Han J W,Ng V T et al.A fast distributed algorithm for mining association rules[C].In:Proceedings of IEEE 4th International Conference Parallel and Distributed Information Systems,Miami Beach, Florida, 1996 : 31 -44.
  • 8Cheung David W,Ng Vincent T,Fu Ada W.Efficient Mining of Association Rules in Distributed Databases[J].IEEE Transactions On Knowledge And Data Engineering, 1996 ; 8 (6) : 911 -922.
  • 9Cheung D W,Lee S D,Xiao Y Q.Effect of Data Skewness and Workload Balance in Parallel Data Mining[J].IEEE Transactions on Knowledge and Data Engineering.2002;14(3):498-514.
  • 10Schuster A ,Wolff R.Communication efficient distributed mining of association rules[C].In:Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data,Santa Barbara,California, 2001:473-484.

共引文献17

同被引文献34

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部