期刊文献+

基于ARNOLDI过程的参数估计

Arnoldi Process-based Parameter Estimation
下载PDF
导出
摘要 本文提出在超分辨率复原中使用基于Arnoldi过程来高效计算正则化参数的方法。通过Arnoldi过程分解,该方法将大型稀疏系统矩阵投影到Krylov子空间上并表达成一个小型稠密的Hessenberg矩阵。给出了利用Hessenberg矩阵简化超分辨率复原中解计算的公式。推导了快速计算L曲线的定理。该方法可减少正则化参数的计算代价。 The paper proposes an efficient method based on the Arnoldi process for the estimation of L-curve in superresolution image restorations. Through the Arnoldi process the method can generate orthogonal bases for the Krylov suhspaces and small and condensed Hessenherg matrices which are matrix representations of the orthogonal projections of the large and sparse system matrix in super image restoration onto the Krylov subspaces. The paper presents the simple solution in super image restoration by the Hessenberg matrix and formulates the the theorem for quickly computing L-curve. The method can reduce the computational complexity of the regular parameters.
作者 解凯
出处 《计算机科学》 CSCD 北大核心 2007年第11期205-207,共3页 Computer Science
基金 黑龙江省教育厅科学基金(10551115) 北京印刷学院院选人才引进基金
关键词 Arnoldi过程 正则化参数 超分辨率图像 Arnoldi process, Regular parameter, Super-resolution image
  • 相关文献

参考文献7

  • 1Tsai R Y,Huang A K.Multi-frame image restoration and registration.In:As advances in Computer Vision and Image Processing,1984,1:317-339
  • 2Hansen P C,O'Leary D.The use of the L-curve in the regularization of discrete ill-posed problems.SIAM J Sci Comput,1993,14(6):1487-1503
  • 3Molina R,Vega M,Abad J,et al.Parameter Estimation in Bayesian High-resolution Image Reconstruction with Multisensors.IEEE Trans on Image Processing,2003,12(12):1655-1667
  • 4Park S C,Park M K,Kang M G.Super-resolution Image Reconstruction:A Technical Overview.IEEE Signal Processing Magazine,2003.21-36
  • 5Golub G H,Van Loan C F.Matrix Computations.The Johns Hopkins University Pree,1996
  • 6Elden L.Algorithms for the Regularization of Ill-conditioned Least Squares Problems.BIT,1997,17:134-145
  • 7张新明.超分辨率图像复原的研究:[博士论文].北京:北京工业大学,2002.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部