期刊文献+

Hilbert空间中g-Riesz框架 被引量:8

G-Riesz frames in Hilbert spaces
原文传递
导出
摘要 在复Hilbert空间中引入g-Riesz框架的定义,得到g-Riesz框架与算子之间的一个充要条件,并利用泛函分析中的算子理论对g-Riesz框架的扰动性作进一步的探讨. Introduced the definition of a g-Riesz frame in a complex Hilbert space and obtain a necessary and sufficient condition for a g-Riesz frame and operator. Then we consider the stability of a g- Riesz frame for a complex Hilbert space under perturbation with operator theory in functional analysis.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期802-807,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(Z0511013) 福建省教育厅基金资助项目(JB04038)
关键词 G-框架 g-Riesz框架 扰动性 g-frame g-Riesz frame stability
  • 相关文献

参考文献12

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series[J]. Trans Amer Math Soc, 1952, 72 : 341 -366.
  • 2Casazza P G. The art of flame theory[J]. Taiwan Residents J of Math, 2000, 4(2) : 129 -201.
  • 3Christensen O. Frames Riesz bases and discrete Gabor/wavelet expansions[J]. Bull Amer Math Soc, 2001,38(3) : 273 -291.
  • 4Christensen O. An introduction to frames and Riesz bases[ M]. Boston: Birkhauser, 2003.
  • 5Walnut D F. An introduction to wavelet analysis [ M ]. Boston: Birkhauser, 2002.
  • 6Mallat S. A wavelet tour of signal processing[M]. San Diego: Academic Press, 1999.
  • 7Christensen O. Operators with closed range, pseudo - inverses, and perturbation of frames for a subspaee [ J ]. Canad Math Bull, 1999, 42(1): 37-45.
  • 8Sun W. G- frame and g-Riesz base[J]. J Math Anal Appl, 2006, 322( 1 ) : 437 -452.
  • 9Sun W. Stability of g-frames[J]. J Math Anal Appl, 2007, 326(2) : 858 -868.
  • 10Zhu Y C. Characterizations of g-frames and g-Riesz bases in Hilbert spaces[J]. Acta Mathematica Sinica: English Series, 2008, 24(3) : 501 -512.

同被引文献64

  • 1丁明玲,朱玉灿.g-框架的稳定性[J].福州大学学报(自然科学版),2007,35(3):321-325. 被引量:10
  • 2肖祥春,朱玉灿,王燕津,丁明玲.由g-Bessel序列定义的线性算子的一些性质[J].福州大学学报(自然科学版),2007,35(3):326-330. 被引量:6
  • 3Duffin R J,Schaeffer A G.A Class of Nonharmonic Fourier Series[J].Trans Amer Math Soc,1952,72:341-366.
  • 4Casazza P G.The Art of Frame Theory[J].Taiwan Residents J of Math,2000,4(2):129-201.
  • 5Christensen O.Frames Riesz Bases and Discrete Gabor/Wavelet Expansions[J].Bull Amer Math Soc,2001,38(3):273-291.
  • 6Christensen O.An Introduction to Frames and Riesz Bases[M].Boston:Birkhauser,2003.
  • 7Walnut D F.An Introduction to Wavelet Analysis[M].Boston:Birkhauser,2002.
  • 8Mallat S.A Wavelet Tour of Signal Processing[M].San Diego:Academic Press,1999.
  • 9Christensen O.Operators with Closed Range,Pseudo-inverses,and Perturbation of Frames for a Subspace[J].Canad Math Bull,1999,42(1):37-45.
  • 10Casazza P G,Christensen O.Perturbation of Operator and Applications to Frame Theory[J].J Fourier Anal Appl,1997,3:543-557.

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部