期刊文献+

基于混合遗传算法和点面距离测度的深度像配准 被引量:2

Range image registration using hybrid genetic algorithm and point-to-plane distance-based measure
下载PDF
导出
摘要 提出一种利用改进的遗传算法和点面距离作为误差测度的深度像精确配准算法。与现有ICP框架下的迭代算法不同,将深度像配准视为高维空间的一个优化问题,通过在遗传算法中加入退火选择、爬山法以及参数空间的动态退化来加速寻找最优的位置转换关系。同时,采用一种新的基于点面距离的适应函数来计算配准误差,使得算法具有更强的鲁棒性。实验结果表明,该算法不需要初始的运动参数估计,具有较高的配准精度,收敛速度快且抗噪声能力强。 This paper presented a novel approach for precise registration of range images pair with an improved genetic algorithm(GA) and a new error metric based on the point-to-plane distance. Different to the existed ICP methods, this approaeh formulated the surface registration as a high dimensional optimization problem. Then combined the strategy of simulated annealing(SA) selection, hill-climbing and dynamic parametric space degeneration into a GA to offer much faster convergence and more precise registration. At the same time, employed a new measure based on the point-to-plane distance as fitness function to evaluate the alignment error, which made the approach more robust. A number of experiments demonstrate that the presented method is insensitive to noises as well as the initial pose estimation and has high precision and fast convergence.
出处 《计算机应用研究》 CSCD 北大核心 2007年第12期354-356,360,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60275012) 广东省普通高校自然科学研究重点资助项目(04Z010) 广东省自然科学基金资助项目(031804) 深圳市科技计划资助项目(200341)
关键词 遗传算法 点面距离 误差测度 深度像配准 genetic algorithm point-to-plane distance error metric range image registration
  • 相关文献

参考文献9

  • 1CHOW C K, TSUI H T, LEE T. Surface registration using a dynamic genetic algorithm [ J]. Pattern Recognition, 2004,37 ( 1 ) : 105- 117.
  • 2SILVA L,BELLON 0 R P,BOYER K L. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(5):762-776.
  • 3BESL P J, McKAY N D. A method for registration of 3D shapes[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2):239-256.
  • 4CHEN Y, MEDIONI G. Object modeling by registration of multiple range images [ C ]//Proc of IEEE International Conference on Robotics and Automation. Sacramento: [ s. n. ], 1991:2724-2729.
  • 5RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[ C]//Proc of the 3rd International Conference on 3D Digital Imaging and Modeling. Quebec : IEEE, 2001 : 145-152.
  • 6BLAIS G, LEVINE M. Registering muhi-view range data to create 3D computer objects[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8) :820-824.
  • 7ROBERTSON C, FISHER R B. Parallel evolutionary registration of range data [ J ]. Computer Vision and Image Understanding, 2002,87( 1 ) :39-50.
  • 8GELFAND N, IKEMOTO L, RUSINKIEWICZ S, et al. Geometrically stable sampling for the ICP algorithm[ C]//Proc of the 4th International Conference on 3D Digital Imaging and Modeling. Banff: [ s. n. ], 2003:260-267.
  • 9PULLI K. Multi-view registration for large data sets [ C ]//Proc of the 2nd International Conference on 3D Digital Imaging and Modeling. Ottawa: IEEE, 1999:160-168.

同被引文献14

  • 1Chow C K,Tsui H T,Lee T.Surface registration using a dynamic genetic algorithm[J].Pattern Recognition,2004,37(1):105-117.
  • 2Silva L,Bellon O R P,Boyer K L.Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):762-776.
  • 3Besl P J,McKay N D.A method for registration of 3D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
  • 4Chen Y,Medioni G.Object modeling by registration of multiple range images[C]//Proceedings of the IEEE International Conferonce on Robotics and Automation,Sacramento,1991:2724-2729.
  • 5Rusinkiewicz S,Levoy M.Efficient variants of the ICP algorithm[C]//The 3rd International Conference on 3D Digital Imaging and Modeling,Quebec,2001:145-152.
  • 6Robertson C,Fisher R B.Parallel evolutionary registration of range data[J].Computer Vision and Image Understanding,2002,87(1):39-50.
  • 7Silva L,Bellon O R P,Boyer.K L.Enhanced,robust genetic algorithms for multi-view range image registratian[C]//The 4th International Conference on 3D Digital Imaging and Modeling,Alberta,2003:268-275.
  • 8Masuda T,Yokoya N.A robust method for registration and segmentation of multiple range images[J].Computer Vision and Image Understanding,1995,61(3):295-307.
  • 9Gelfand N,Ikemoto L,Rusinkiewicz S,et al.Geometrically stable sampling for the ICP algorithm[C]//Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling,Banff,2003:260-267.
  • 10岳嵌.粗粒度并行遗传算法的计算性能及其应用研究[D].武汉:华中科技大学系统工程系,2008.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部