期刊文献+

基于SVD和LDA的人脸识别方法 被引量:3

Face recognition based on SVD and LDA
下载PDF
导出
摘要 提出了一种基于奇异值分解与改进的LDA相结合的人脸识别方法。首先利用奇异值分解方法获得图像的有效特征;然后经过改进的LDA处理,这样不仅可以有效降低维数,而且使抽取特征的判别能力得到了有效增强;最后对压缩后的特征向量进行排序,将排序后的特征送入BP网络进行识别。实验结果表明,该方法在低维特征向量下取得了很高的识别率,达到99%,效果优于传统方法。 This paper proposed a method of face recognition based on singular value decomposition and improved LDA. Firstly, effective feature could be obtained using singular value decomposition, and then improved LDA was used not only to depress the feature dimension effectively, but also to enhance the discriminatory power of extracted features. Finally, the short feature vector was sorted and the sorted features were input into the back-propagation network for recognition. Experimental results demonstrate that high recognition rate can be achieved using low dimensional feature vector and achieved 99%. This method outperforms traditional methods.
作者 郝红卫 张蕾
出处 《计算机应用研究》 CSCD 北大核心 2007年第12期377-378,392,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60475003) 北京科技大学基金资助项目
关键词 人脸识别 奇异值分解 线性鉴别分析 反向传播神经网络 face recognition SVD (singular value decomposition) LDA (linear discriminant analysis) BP network
  • 相关文献

参考文献7

二级参考文献21

  • 1Zhang Jun,IEEE Proc,1997年,85卷,9期,312页
  • 2Cheng Y,Proceedings of the 11th International Conference on Pattern Recognation,1992年,221页
  • 3Cheng Yongqing,SPIE.Proceedings on Intelligent Robots and Computer,1991年,85页
  • 4Hong Z,Pattern Recognition,1991年,24卷,3期,211页
  • 5R Chellappa, C L Wilson, S Sirohey. Human and machine recognition of faces: A survey [J]. Proceedings of the IEEE, 1995, 83(5): 705~741
  • 6P N Belhumeur, J P Hespanha, D J Kriegman. Eiegnfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 7D Swets, J Weng. Using discriminant eigenfeatures for image retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (8): 831~836
  • 8M Turk, A Pentland. Eigenfaces for Recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86
  • 9H Yu, J Yang. A direct LDA algorithm for high dimensional data with application to face recognition[J]. Journal of Pattern Recognition, 2001, 34(10): 2067~2070
  • 10L Chen, H Liao, M Ko et al. A new LDA-based face recognition system which can solve the small samples size problem [J]. Journal of Pattern Recognition, 2000, 33(10): 1713~1726

共引文献175

同被引文献21

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部