期刊文献+

基于Rough Set的镜头分割方法 被引量:1

Shot boundary detection based on Rough Set
下载PDF
导出
摘要 综合利用了MPEG视频流P帧的运动特征、像素差和直方图差特征,提出了一种基于Rough Set的镜头分割方法。该方法首先提取视频流中P帧的宏块信息,然后分析得到其运动活力性、宏块类型和运动空间分布,再结合这些帧的像素差特征和直方图差特征,利用Rough Set对这些特征进行约减后,对镜头切换处进行识别。实验表明,该方法能有效地区分镜头的突变,对渐变也能很好地检测。 An approach to shot boundary detection by Rough Set is introduced which comprehensively utilizes the motion features of P frame in MPEG video sequence,the difference of pixel and the difference of histogram.First,some information of macro blocks is extracted in P frame of MPEG video sequence.Then the information analyzed and the motion-activity,the type of macro blocks and the motion-distribution are gotten.Combined these parameters with the difference of pixel and the difference of histogram the shot-boundary detection can be achieved according to the Rough Set after being reduced.Experimental results show that it can effectively distinguish the hard cut and gradual transition.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第36期185-188,共4页 Computer Engineering and Applications
基金 重庆市自然科学基金(the Natural Science Foundation of Chongqing of China under Grant No.2005BB2063) 国家教育部新世纪人才支持计划(the New Century Excellent Talent Foundation from MOE of China under Grant) 重庆市教委科学技术项目(No.050509 No.060517)
关键词 ROUGH SET 运动信息 突变 渐变 Rough Set motion information hard cut gradual transition
  • 相关文献

参考文献14

  • 1章毓晋.基于内容的多媒体信息检索CMIR与国际标准MPEG-7[C]//第九届全国图像学学术会议论文集,1998,9-16.
  • 2覃政仁,吴渝,王国胤.一种基于RoughSet的海量数据分割算法[J].模式识别与人工智能,2006,19(2):249-256. 被引量:7
  • 3袁哲 吴渝 王国胤 等.基于Rough Set的视频分类的视频检索.计算机科学,2005,32(8):20-23.
  • 4王珽 吴渝 陈龙.一个基于Rough Set的关键帧提取方法.计算机科学,2006,33(11):76-78.
  • 5Pawlak Z.Rough Sets[J].Intemational Journal of Computer and Information Sciences, 1982,11:314-356.
  • 6Yeo B L,Liu B.Rapid scene analysis on compressed video[C]//IEEE CSVT, 1995 ,533-544.
  • 7Meng J H,Juan Y J,Chang S F.Scene change detection in a MPEG compressed video sequence[C]//IS&T/SPIE Symposium Proceedings.San Jose,California:SPIE, 1995.
  • 8Yuan Zhe,Yu Wu,Wang Guo-yin,et al.Motion-information-based video retrieval system using rough pre-classification[C]//LNCS 4100: Book Transactions on Rough Sets V,2006,306-333.
  • 9Devakaran A,Peker K,Sun H.A region based descriptor for spatial distributions of motion activity for compressed video[C]//Proceedings of International Conference on Image Processing,2000,287-290.
  • 10俞天力,章毓晋.基于全局运动信息的视频检索技术[J].电子学报,2001,29(z1):1794-1798. 被引量:19

二级参考文献16

  • 1[1]Ohm J R,Bunjamin F,Liebsch W,et al.A set of visual feature descriptors and their combination in a low-level description scheme [J].Signal Processing:Image Communication,2000,16:157-179.
  • 2[2]Chang S F,Chen W,Meng H J,et al.A fully automated content-based video search engine supporting spatiotemporal queries [J].IEEE Trans.Circuits and Systems for Video Technology,1998,8 (5):602-615.
  • 3[4]Jeannin S,Jasinschi R,She A,et al.Motion descriptors for contentbased video representation [J].Signal Processing:Image Communication,2000,16:59-85.
  • 4[5]lntes Corporation.Intel Image Processing Library Reference Manual[M].USA:Intel Corporation,2000.11-16-27.
  • 5[6]Kim E T,Kim H M.Efficient linear three-dimensional camera motion estimation method with applcations to video coding [J].Opt.Eng.1998,37(3):1065-1077.
  • 6[7]International Organization for Standardization,Description of MPEG-7 Content Set [S].ISO/IEC JTC1/SC29/WG11/N2467.Atlantic City:ISO,1998.
  • 7Mehta M, Agrawal R, Rissanen J. SLIQ: A Fast Scalable Classifier for Data Mining. In: Proc of the 5th International Conference on Extending Database Technology. Avignon, France,1996, 18-32
  • 8Shafer J, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining. In: Proc of the 22nd International Conference on Very Large Databases. Bombay, India, 1996,544-555
  • 9Prodromidis A L. Management of Intelligent I.earning Agents in Distributed Data Mining Systems. Ph. D Dissertation. Department of Computer Seienee, Columbia University, New York,USA, 1999
  • 10Chan P K W. An Extensible Meta-Learning Approach for Scalable and Accurate Inductive Learning. Ph. D Dissertation. Department of Computer Science, Columbia University, New York, USA, 1996

共引文献32

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部