摘要
提出了一种新的PSK/QAM星座识别方法,将星座聚类问题转化为星座二维密度函数的数值优化问题,采用小生境遗传算法对该多峰值函数数值矩阵进行有效搜索,获取星座中心,最后结合聚类有效性评价和星座模板匹配,实现了信号星座类型的识别。与基于模糊C-均值的星座聚类方法相比,新方法与初始聚类中心和样本输入次序无关,缩减了星座识别过程中对聚类结果的评价,减小了运算量。
A new constellation identification method was proposed, in which the clustering problem was converted to numeric optimization of constellation's 2-D probability-density-function, and then was resolved by a Niche based genetic algorithm, thus signal's constellation was recognized with the help of clustering-validity evaluating and pattern matching. Comparing with traditional clustering algorithms based on Fuzzy C-Means, this presented method is irrelative with initial centers and samples' input order, and costs less in evaluating clusters.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2007年第24期5845-5848,共4页
Journal of System Simulation
基金
国防重点预研项目(6130320)
关键词
星座
小生境
遗传算法
调制识别
constellation
Niche
genetic algorithms
modulation recognition