期刊文献+

改进支持向量机对污水处理厂运行状况的故障诊断 被引量:6

Fault Diagnosis of WWTP Based on Improved Support Vector Machines
下载PDF
导出
摘要 针对污水处理厂运行时故障数据不平衡性和代价敏感等特点,构造风险泛函RWLOO(α)来改进支持向量机(Support vector machine,SVM);并用遗传算法(GA)对风险泛函求全局最优.在GA对RWLOO(α)寻优过程中,SVM的几个参数以及核函数同时进行最优化.结果表明:用改进的SVM对污水处理厂的故障数据进行分类时,比未经改进的SVM错分类率低16.5%. Because of the characteristics of the abnormal data in waste water treatment plant (WWTP), such as the unbalanced distribution and cost sensitiveness of the fault classes data, a risk functional RwLoo (a) with weight coefficient based on leave-one-out errors was presented, and then Genetic Algorithms (GA) was used to globally optimize the risk functional RwLoo( a ). In the optimization algorithm, the kernel function and some parameters of support vector machine (SVM) were optimized synchronously. The improved SVM was used to classify the dataset of WWTP, and the results have indicated that the misciassification rate of the improved SVM is 16.5 % lower.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第12期68-71,共4页 Journal of Hunan University:Natural Sciences
基金 国家杰出青年科学基金资助项目(50225926 50425927) 高等学校博士学科点专项科研基金资助项目(20020532017)
关键词 故障诊断 支持向量机 遗传算法 改进支持向量机 fault diagnosis SVM genetic algorithms improved SVM
  • 相关文献

参考文献7

  • 1PUNAL A, ROCA E, LEMA J M. An expert system for monitoring and diagnosis of anaerobic wastewater treatment plants[J]. Water Research, 2002, 36(10) : 2656 - 2666.
  • 2ALBAZZAZ H, WANG X Z, MARHOON F. Multidimensional visua, lisation for process historical data analysis a comparative study with multivariate statistical process control [ J ]. Journal of Process Control, 2005, 15(3) : 285 - 294.
  • 3LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Con- trol, 2004, 14(5), 467- 485.
  • 4LEE J M, YOO C K, CHOI S W, et al. Nonlinear process mon- itoring using kernel principal component analysis [ J ]. Chemical Engineering Science, 2004, 59(1 ) : 223 - 234.
  • 5苏建元,孙蔚,孙薇,叶海涛.基于神经网络和模糊逻辑的工业过程故障诊断与报警系统[J].动力学与控制学报,2006,4(3):284-288. 被引量:5
  • 6YUAN S F, CHU F L. Support vector machines-based fault diagnosis for turbo-pump rotor[ J ]. Mechanical Systems and Signal Processing, 2006, 20(4) : 939 - 952.
  • 7VAPNIK V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.

二级参考文献2

  • 1[5]Diego Ruiz.Fault diagnosis support system for complex chemical plants.Computer And Chemical Engineering,2001,25:151~160
  • 2[7]Wang XZ,Chen BH.Neural nets,fuzzy sets and digraphs in safety and operability studies of refinery reaction processes.Chemical Engineering Science,1996,51(10):2169~2178

共引文献4

同被引文献102

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部