期刊文献+

一种新的模糊神经网络删剪策略 被引量:1

A new fuzzy neural network reduction strategy
下载PDF
导出
摘要 模糊规则的数量直接决定模糊神经网络结构的复杂度和效率.基于神经网络自构行学习(NNSCL)算法,用共轭剃度预条件正则方程算法求取删除隐层神经元后的剩余权值,得到改进的NNSCL-1算法.将此算法应用到模糊神经网络的规则推理层,可以极大地优化网络的规则及结构,并且结构优化后不需要重新训练也能保持网络的精确度和泛化能力.仿真结果显示了此算法的有效性和可行性. The number of fuzzy rules directly determines the complexity and efficiency of the fuzzy neural network(FNN). Based on the neural network self-configuring learning(NNSCL) algorithm, the NNSCL-I algorithm is obtained by using the conjugate gradient precondition normal equation (CGPCNE) algorithm to adjust the remaining weghts after pruning nuurons. The NNSCL-I algorithm is applied in the rule-reasoning layer of the FNN to simplify its rules and structure in a great extent and preserve a good level of accuracy and generalization ability without retraining after pruning. The simulation results demonstrate the effectiveness and the feasibility of the algorithm.
作者 艾芳菊
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2007年第4期346-350,共5页 Journal of Hubei University:Natural Science
基金 国家973计划项目(2004CB318003)资助课题
关键词 模糊神经网络 神经网络自构行学习(NNSCL)算法 最小二乘问题 共轭剃度预条件正则方程算法 fuzzy neural network neural network self-configuring learning(NNSCL) algorithm the system in the least squares sense conjugate gradient precondition normal equation(CGPCNE) algorithm
  • 相关文献

参考文献5

  • 1Sietsma J, Dow R J F. Neural net pruning: why and how [C]. Proc IEEE Int Conf. Neural Networks San Diego: CA, 1988, 1:325-333.
  • 2Castellano G, Fanelli A, Pelillo M. An iterative pruning algorithm for feedforward neural networks [J]. IEEE Transactions on Neural Networks, 1997,8(3):519-531.
  • 3雷鸣,朱心飚,吴昆红,刘延林.自适应神经网络及其在刀具智能监控中的应用[J].华中理工大学学报,1993,21(5):71-77. 被引量:2
  • 4Chao C T, Chen Y J, Teng C C. Simplification of fuzzy-neural systems using similarity analysis [J]. IEEE Transactions on Systems, Man, Cybernetics-Part b: Cybernet ics, 1996,26 (2) : 344-354.
  • 5Bjorck A, Elfving T. Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations[J]. BIT, 1979,19: 145-163.

二级参考文献2

共引文献1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部