摘要
针对医学影像库信息量大、关联信息多、对象复杂的特点,将粗糙集算法与一种近似的支撑矢量机算法相结合实现了对医学影像库的正常、异常分类。粗糙集算法有效地降低了医学影像库的维度,而非线性的近似支撑矢量机算法则克服了标准支撑矢量机在实际应用中表现出来的算法速度慢、算法过于复杂而难于实现以及检测阶段运算量大等缺陷。实践证明了该方法的确具备简单、快速、高效的特点。
The rough set algorithm and a proximal support vector machine(PSVM) is integrated and used to implement a classification of digitized mammograms. Rough set algorithm is used to reduce useless and interfering attributes of medical images,and the PSVM is applied to classify the medical images as normal and abnormal classes. The PSVM not only runs faster than standard support vector machine classifiers, but also is easy to implement with satisfactory result for lower hardware. It is proved by experiments that the method do have some good features such as simpleness, speediness and high efficiency.
出处
《计算机应用与软件》
CSCD
北大核心
2007年第12期5-6,31,共3页
Computer Applications and Software
基金
国家自然科学基金(60372072)
中国博士后科学基金项目(2003f033519)
关键词
粗糙集
约简
核
支撑矢量机
Rough set Reduce Core Support vector machine