期刊文献+

二维凸壳算法在合成金属设计中的应用 被引量:1

APPLICATION OF TWO-DIMENSIONAL ALGORITHM FOR CONVEX HULL TO DESIGN OF METAL SYNTHESIS
下载PDF
导出
摘要 计算几何主要研究解决几何问题的算法。计算几何在图形学、机器人技术、超大规模集成电路设计等诸多领域有着十分重要的应用。凸壳[1]是计算几何中最普遍、最基本的一种结构,凸壳不仅自身有许多特性,而且它还是构造其他几何形体的有效工具。在实际的应用中,许多实际问题可以通过构造凸壳转化为凸壳问题加以解决。详细地介绍了凸壳的基本概念和生成在一定点集上的凸壳的算法以及应用凸壳的基本原理来解决现实生活中的一些问题。 Computational geometry mainly studies the algorithm, which is related to geometry problems. Computational geometry is broadly used in computer graphics ,robot technology, grand scale integration and so on. Convex hull is the most popular and basic structure in comPutational geometry. It not only has many characteristics, but also is a very useful tool for constructing other geometry forms and structures, In practical application, many actual problems could be solved by convex hull algorithm. The concept of convex hull is introduced. The construction of a convex hull is discussed,and the application of convex hull is proposed,
作者 邓安远 李伟
出处 《计算机应用与软件》 CSCD 北大核心 2007年第12期142-144,共3页 Computer Applications and Software
关键词 凸亮 计算几何 金属合成 Convex hull Computational geometry Metal synthesis
  • 相关文献

参考文献7

二级参考文献19

  • 1张朝亮,江汉红,陈少昌,王海峰.基于WinFACT的模糊控制系统设计[J].微计算机信息,2006,22(04S):35-36. 被引量:2
  • 2Graham R L. An efficient algorithm for determining the convex hull of a finite planar set[J ]. Info Proc Lett, 1972,1:132-133.
  • 3Prepatata F P. Computational geometry:An introduction[M]. New York: Springer-Verlag, 1985.
  • 4Aichholzer O. Towards compatible triangulations[J]. Theoretical Computer Science, 2003,296(1):3-13.
  • 5Vigo M. Regular triangulations of dynamic sets of points[J]. Computer Aided Geometric Design, 2002,19(2):127-149.
  • 6Fortune S.Computing in euclidean geometry[M].New York:World Scientific Publishing Co Pte Ltd, 1995.231-245.
  • 7Forrest A R. Computational geometry[M].Proc Royal Society,1971, 321(4):187-195.
  • 8Lamot M. A fast polygon triangulation algorithm based on uniform plane subdivision[J]. Computers and Graphics,2003,27(2):239-253.
  • 9Cheong O. Computing farthest neighbors on a convex polytope[J]. Theoretical Computer Science, 2003,296(1):47-58.
  • 10周培德著.计算几何--算法分析与设计[M].北京:清华大学出版社,1999..

共引文献27

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部