期刊文献+

碳纳米管加载量对复合材料吸波性能的影响 被引量:8

Effect of carbon nanotube content on the radar absorbing properties of carbon nanotube/resin composites
下载PDF
导出
摘要 将不同质量分数的碳纳米管和环氧树脂充分混合,制成复合吸波涂料并涂覆在铝板上制成吸波涂层。采用TEM对碳纳米管的形貌进行观察。使用反射率扫频测量系统HP8757E标量网络分析仪检测复合材料的吸波性能。结果表明,复合材料在2GHz^18GHz均有良好的吸波性能。碳纳米管加载质量分数为8%和10%时,复合材料吸波性能最佳。8%碳纳米管加载量,峰值最大,达到~22.55dB,波峰出现在12.32GHz,带宽分别为2.56GHz(R<-8dB)和4.00GHz(R<-5dB)。10%碳纳米管添加量,带宽最大,分别达到2.80GHz(R<-8dB)和7.00GHz(R<-5dB),波峰出现在13.67GHz,峰值为-14.59dB。 The radar wave absorbing properties of carbon nanotube based composites were investigated. Carbon nanotubes were added to epoxy resin with different weights and dispersed by sonication to prepare radar absorption composite materials (RAM). Then the composite paste was put into an aluminium pan to form the test sample. Carbon nanotubes were characterized by TEM and radar absorbing properties were obtained by the arc reflectivity method. Results indicate that carbon nanotubes have excellent radar absorbing properties in the waveband of 2-18 GHz. The best parameters are obtained using mass fraction carbon nanotube additions of 8% and 10%. The highest absorbing peak of -22.55 dB at 12.32 GHz is obtained for the composite with an addition of 8% carbon nanotubes and the composite has a bandwidth of 2.56 GHz at R 〈 - 8 dB and 4.00 GHz at R 〈 - 5 dB. With an addition of 10%, the absorbing peak of - 14.59 dB is located at 13.67 GHz with the largest bandwidths of 2.80GHz at R〈 -8dB and 7.00GHz at R〈 -5dB.
作者 孙晓刚
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2007年第4期375-378,共4页 New Carbon Materials
基金 2003年江西省科技厅科研计划项目~~
关键词 碳纳米管 雷达吸波材料 吸波性能 复合材料 Carbon nanotubes Radar absorption material Absorbing properties Composites
  • 相关文献

参考文献15

  • 1Sumio lijima. Helical Microtubules of Graphitic Carbon[ J]. Nature, 1991, 354: 56-58.
  • 2李峰,白朔,成会明.纳米碳管[J].新型炭材料,2000,15(3):79-80. 被引量:40
  • 3潘春旭,Liming Yuan,Kozo Saito.扩散火焰合成碳纳米管研究[J].新型炭材料,2001,16(3):24-27. 被引量:38
  • 4刘畅,成会明.电弧放电法制备纳米碳管[J].新型炭材料,2001,16(1):67-71. 被引量:46
  • 5Falvo M R, Clary G J, Taylor R M, et al. Bending and buckling of carbon nanotubes under large strain [ J ]. Nature, 1997, 389 : 582.
  • 6Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical properties of carbon nanotubes [ J ]. Appl Phys A, 1999,69: 255 -260.
  • 7Demczyk B G, Wang Y M, Cumings J, et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J]. Material Science and Engineering, 2002, A334: 173-178.
  • 8Savas Berber, Young-Kyum Kwon, David Tomanek. Unusually high thermal conductivity of carbon nanotubes [ J ]. Phys Rev Lett, 2000, 84: 4613-4616.
  • 9Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon [ J ]. Nature, 1996, 382 : 54-56.
  • 10Tang Z K, Zhang Lingyun, Wang N, et al. Superconductivity in 4 Angstrom single-walled carbon nanotubes[J]. Science, 2001, 292 : 3 462-3 465.

二级参考文献82

共引文献275

同被引文献81

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部