期刊文献+

基于粗糙集理论的肺癌细胞图像识别 被引量:3

The image recognition of lung cancer cells based on rough set theory
下载PDF
导出
摘要 肺癌细胞的早期诊断相当困难,肺癌细胞的特征选择依据难以把握.提出根据肺癌细胞的每个特征属性对粗糙集下、上近似集的影响程度作为属性约简的依据,根据约简的结果,再采用扩展的相近关系粗糙集对肺癌细胞进行识别诊断.利用下近似集中的结果进行判断可以提高识别的准确率,利用上近似集中的结果进行判断可以降低肺癌细胞识别的漏诊率.从识别的结果来看,方法行之有效. Recognizing lung cancer cells at the early stage is a difficult problem in the field of image process and pattern recognition. And feature selection of lung cancer cells is also difficult to handle. Each feature of lung cancer cells was selected by the effect degree to the lower and upper approximation set. And according to the reduce result of feature selection, diagnose of lung cancer cells on the basis of approximation rough set theory was adopted. Lower approximation set of each type of cancer increases the accuracy of recognition, and upper approximation set can decrease the undetected symptom rate. The results of simulation show this method is feasible and effective.
作者 肖迪 张广明
出处 《南京工业大学学报(自然科学版)》 CAS 2007年第6期87-90,共4页 Journal of Nanjing Tech University(Natural Science Edition)
基金 江苏省自然科学基金资助项目(BK2006176)
关键词 粗糙集理论 肺癌细胞识别 特征选择 漏诊率 rough set theory lung cancer cell recognition feature selection undetected symptom rate
  • 相关文献

参考文献7

二级参考文献15

  • 1徐建华.图象处理与分析[M].北京:科学出版社,1992..
  • 2Zhou P,Robust Statistical Models for Cell Image Intefpretation Image and Vision Computing,1997年,15期,307页
  • 3夏德深,现代图象处理技术与应用,1997年
  • 4徐建华,图象处理与分析,1992年
  • 5Ohrn A, Komorowski J, Skowron A, Synak P. The ROSTTA software system[J]. Polkowski L,Skowron A. Rough sets in knowledge discovery 2:applications,case studies and software systems. Studies in Fuzziness and Soft Computing,1998,(19): 572~576.
  • 6Pawlak Z. Rough sets [J]. International Journal of Computer and Information Sciences, 1982,11(5): 341~356.
  • 7Mi J S, Wu W Z, Zhang W X. Approaches to knowledge reduction based on variable precision rough set model[J]. Information Sciences, 2004,159(3~4): 255~272.
  • 8Salido J M F,Murakami S. Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations[J]. Fuzzy Sets and Systems,2003,139(3):635~660.
  • 9Pomykala J A. About tolerance and similarity relations in information systems[A]. Rough Sets and Current Trends in Computing,2002:175~182.
  • 10Kim D. Data classification based on tolerant rough set[J]. Pattern Recognition,2001,34(8): 1613~1624.

共引文献22

同被引文献34

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部