期刊文献+

Fn、TPO基因修饰对人骨髓间充质干细胞的影响 被引量:2

Effect of fibronectin-thrombopoietin gene modification on human bone marrow mesenchymal stem cells
原文传递
导出
摘要 目的观察纤维连接蛋白(Fn)、血小板生成素(TPO)融合基因修饰对人骨髓间充质干细胞(MSC)的影响。方法构建携带 Fn-TPO 融合基因的重组逆转录病毒载体,并以其对骨髓 MSC进行基因修饰;观察 Fn-TPO 基因在骨髓 MSC 中的表达,以及基因修饰后骨髓 MSC 的体外增殖、黏附造血细胞和分泌 TPO 的能力;并将脐血 CD34^+细胞接种到基因修饰后骨髓 MSC 形成的滋养层,培养7d 观察修饰后骨髓 MSC 对造血细胞体外扩增和集落形成能力的影响。结果成功构建携带 Fn-TPO基因的重组逆转录病毒载体且以该逆转录病毒载体对骨髓 MSC 进行体外基因修饰;Fn、TPO 基因在骨髓 MSC 内能够正常转录;基凶修饰后的骨髓 MSC 体外增殖能力[(6.92±0.77)×10~4/ml]与对照组[(7.18±0.89)×10~4/ml]比较差异无统计学意义(P>0.05);基冈修饰组和对照组黏附造血细胞能力分别为0.188±0.018和0.167±0.017(P<0.01),分泌 TPO 能力分别为(7.46±0.59)ng/ml 和(5.58±0.37)ng/ml(P<0.01),细胞分泌 TPO 的能力不受培养时间的影响,但受细胞生长状态影响;2×10~4脐血 CD34^+造血干/祖细胞经基因修饰后骨髓 MSC 联合必要细胞因子体外扩增7 d,有核细胞数、CD34^+细胞比例、BFU-E、CFU-GM 及 CFU-GEMM 分别为(29.9±2.7)×10~4、(33.3±2.8)%、109.3±4.1/1×10~4 CD34^+细胞、163.7±7.1/1×10~4 CD34^+细胞、13.3±1.5/1×10~4 CD34^+细胞,较对照组明显增加(P<0.01)。结论 Fn-TPO 基因修饰能够增强骨髓 MSC 黏附造血细胞、分泌 TPO 及支持脐血 CD34^+细胞扩增的能力。 Objective To observe the effect of Fn-TPO gene modification on human bone marrow mesenchymal stem cells (MSCs). Methods Retroviral vector containing Fn-TPO gene was constructed and bone marrow MSCs was modified by this vector. The transcription of Fn-TPO gene in MSCs was observed. The proliferation capacities, hematopoietic cells adhering capacities and TPO secretion capacities of gene modified MSCs were assayed respectively. Cord blood CD34^+ cells were seeded on the gene modified MSCs layers and several essential growth factors were added. After co-culturing in vitro for 7 days, the number of CD34 ^+ cells and their colony forming capacities were assayed by flow cytometry and semisolid culture assay. Results Retroviral vector containing Fn-TPO gene was successfully constructed and bone marrow MSCs were modified by this vector. Fn-TPO gene was expressed by bone marrow MSCs after gene modification. The viability of MSCs had no significant difference between pre- and post-gene-modification [ ( 7. 18 ± 0. 89 ) 10^4/ml vs (6.92 ± 0.77 ) 10^4/ml, P 〉 0.05 ]. The hematopoietic cells adhering ability of gene modified bone marrow MSCs was reinforced(0. 188 ±0.018 vs 0. 167 ±0.017, P 〈0.01 ). The concentration of TPO in the MSCs culture supernatant raised from (5.58 ±0.37) ng/ml to (7.46 ±0.59) ng/ml (P〈0.01) and did not significantly decline in a short-time peroid, but influenced by the growth status of MSCs. After co-culturing with gene modified MSCs for 7 days, the absolute number of nucleted cells, the percentage of CD34^+ cells and the colony numbers of BFU-E, CFU-GM, CFU-GEMM were (29.9± 2.7 ) × 10^4, (33.3 ± 2.8) % , 109.3± 4.1, 163.7 ± 7.1, 13.3 ± 1.5, respectively, being significantly higher than that co-cultured with non-modifled MSCs. Conclusions Fn-TPO gene modification can improve the capacity of human bone marrow MSCs for hematopoietic cells adhering, TPO secretion and cord blood CD34^+ cells amplification.
出处 《中华血液学杂志》 CAS CSCD 北大核心 2007年第12期832-836,共5页 Chinese Journal of Hematology
基金 国家自然科学基金(30100095)
关键词 骨髓间充质干细胞 造血干细胞 纤维连接蛋白 血小板生成素 基因修饰 Mesenchymal stem cells Hematopoietic stem cells Fibronectin Thrombopoietin Gene modification
  • 相关文献

参考文献8

  • 1Kawano Y, Kobune M, Yamaguchi M, et al. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT) -transfected human stromal cells. Blood, 2003,101:532-540.
  • 2Buzza MS, Zamurs L, Sun J, et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem, 2005,280:23549-23558.
  • 3Main AL, Harvey TS, Baron M, et al. The three-dimensional structure of the tenth type III module of fibronectin : an insight into RGDmediated interactions. Cell, 1992,71:671-678.
  • 4Dao MA, Hashino K, Kato I, et al. Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood, 1998,92 : 4612-4621.
  • 5van der Loo JC, Xiao X, McMillin D, et al. VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. J Clin Invest, 1998,102 : 1051-1061.
  • 6Fox NE, Kaushansky K. Engagement of integrin alpha 4 beta 1 enhances thrombopoietin-induced megakaryopoiesis. Exp Hematol, 2005,33:94-99.
  • 7Baxter MA, Wynn RF, Deakin JA, et al. Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I . Blood, 2002,99 : 1857-1859.
  • 8Xie CG, Wang JF, Xiang Y, et al. Marrow mesenchymal stem ceils transduced with TPO/FL genes as support for ex vivo expansion of hematopoietic stem/progenitor cells. Cell Mol Life Sci, 2005,62 : 2495-2507.

同被引文献18

  • 1于洁,张磊,莫姝,杨光,李欣,宪莹.逆转录病毒载体介导Fn-TPO基因修饰人骨髓间充质干细胞[J].第三军医大学学报,2006,28(24):2396-2399. 被引量:1
  • 2李进,郑东,杨述华,刘国辉,冯勇,傅德皓,梅荣成,唐欣.生长转化因子-β3转染骨髓基质干细胞联合脱钙骨基质修复软骨缺损[J].中华实验外科杂志,2007,24(6):682-684. 被引量:7
  • 3Itakura S, Asari S, Rawson J, et al. Mesenchymal stem cells facilitate the induction of mixed hematopoietic ehimerism and islet allograft tolerance without GVHD in the rat. Am J Transplant, 2007,7(2) :336-346
  • 4Bensidhoum M, Chapel A, Francois S, et al. Homing of in vitro expanded Stro-1- or Stro-1 + human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood, 2004,103(9) :3313-3319
  • 5Park SK, Won JH, Kim H J, et al. Co-transplantation of human mesenehymal stem cells promotes human CD34^+ cells engraftment in a dose-dependent fashion in NOD/SCID mice. J Korean Med Sci, 2007,22 (3) :412-419
  • 6Le Blanc K, Samuelsson H, Gustafsson B, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia, 2007,21 (8) :1733-1738
  • 7Ball LM, Bemardo ME, Rcelofs H, et al. Cotransplantation of ex vivo expanded mescnchyrnal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentieal hematopoietie stem-cell transplantation. Blood, 2007,110 ( 7 ) : 2764-2767
  • 8Guezguez B, Bhatia M. Transplantation of human hematopoietic repopulating cells: mechanisms of regeneration and differentiation using human-mouse xenografts. Gurr Opin Organ Transplant, 2008,13( 1 ) :44-52
  • 9Muguruma Y, Yahata T, Miyatake H, et al. Reconstitution of the functional human hematopoietie microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood, 2006,107(5) :1878-1887
  • 10Subbanna PK. Mesenehymal stem cells for treating GVHD : In-vivo fate and optimal dose. Med Hypotheses, 2007,69(2) :469-470

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部