期刊文献+

投影Riccati方程组一般形式的解

The General Solutions to Projective Riccati Equations
下载PDF
导出
摘要 讨论了投影Riccati方程组的解,利用齐次平衡法导出了将方程组转化为二阶常系数线性方程的非线性变换,通过对二阶常系数线性方程求解进而给出了投影Riccati方程组一般形式的解. This paper discusses the solutions to projective Riccati equations. By the homogeneous balance method we derive the nonlinear transformation which can be converted the projective Riccati equations to the second constant coefficients linear ODE. So the general solutions to projective Riccati equations are obtained by solving the constant coefficients linear ODE.
出处 《兰州工业高等专科学校学报》 2007年第4期7-9,共3页 Journal of Lanzhou Higher Polytechnical College
关键词 投影Riccati方程组 齐次平衡法 非线性变换 非线性演化方程 projective Riccati equations homogeneous balance method nonlinear transformation nonlinear evolution equation
  • 相关文献

参考文献7

  • 1Conte R, Musette M. Link between solitary waves and projective Riccati equation [ J ]. Phys. A: Math. C, en., 1992 (25) :2609 - 2612.
  • 2王明亮,周宇斌.浅水长波近似方程组的非线性函数变换和孤立波解[J].兰州大学学报(自然科学版),1998,34(2):21-25. 被引量:14
  • 3ZHANG Guixu, LI Zhibin, DUAN Yishi. Exact silitary wave solutions of nonlinearwave equations[J]. Science in China. 44(3) :396 - 401.
  • 4D J Huang, H Q Zhang. Variable- coefficient projective Riccati equation method and its application to a new (2 + 1 ) - dimensional simplified generalized Broer- Kaup system. Chaos, Solitons & Fractals. 2005 (23) :601 - 607.
  • 5D J Huang, H Q Zhang. Exact traveling wave solutions for the Boiti Leon Pempinelli equation. Chaos Solitons Fractals. 2004(22) :243 - 247.
  • 6刘中飞,韩家骅,张文亮,吴国将.新的函数展开法与非线性Klein-Gordon方程新的准确解[J].安徽大学学报(自然科学版),2007,31(1):52-56. 被引量:3
  • 7C Q Dai, J M Zhu, J F Zhang. New exact solutions to the mKdV equation with variable coefficients. Chaos, Solitons & Fractals.2006(27) :881 - 886.

二级参考文献3

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部