期刊文献+

生存指数熵及其分析性质 被引量:1

Survival exponential entropies and its analytic properties
下载PDF
导出
摘要 对于随机向量X不确定性的测度,提出了两种新的熵测度的广义类,把它们作为生存指数熵和广义生存指数熵.这些新的熵改进了Shannon熵,克服了Shannon熵的缺陷.生存熵定义了测度的广义类,它包含了累积剩余熵的特殊情形.研究了这两种熵的分析性质,证明了新熵的一些性质与Shannon熵和Rényi熵的性质相类似. This paper proposes two new broad classes for measures of uncertainty of a random vector X. It refers to them as the survival exponential and the generalized survival exponential entropies. These new entropies improve Shannon entropy and overcome the drawbacks of Shannon entropy. Moreover, survival entropies define broad classes of measures that contain the cumulative residual entropy of a particular case. It studies two new entropies analytic properties. Several properties of the new survival entropies are also proved that Shannon and Rényi classic entropies have similar analogous properties.
作者 胡华
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 2007年第4期493-496,共4页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金资助项目(60663003)
关键词 生存指数熵 广义生存指数熵 累积剩余熵 Shannon熵 Rényi熵 survival exponential entropy generalized survival exponential entropy cumulative residual entropy Shannon entropy Rényi entropy
  • 相关文献

参考文献9

  • 1Shannon C E. A Mathematical theory of communication[J]. Bell Syst Tech J, 1948,27:379-432.
  • 2Renyi A. On measures of entropy and information[J]. Mathematical Statistics and Probability, 1961,1:547-561.
  • 3Campbell L L. Exponential entropy as a measure of extent of a distribution[J]. Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1966,5:217-225.
  • 4Koski T, Persson L E. Some properties of generalized exponential entropies with applications to data compression[J]. Inf Sci, 1992,62:103-132.
  • 5Rao M, Chen Y, Vemuri B C, et al. Cumulative residual en-ropy: A new measure of information[J]. IEEE Tran Inf Theory, 2004, 50(6):1220-1228.
  • 6Ebrahimi N, Pellerey F. New partial ordering of survival functions based on the notion of uncertainty[J]. J App Probab, 1995, 32:202-211.
  • 7Ebrahimi N. How to measure uncertainty in the residual life time distribution[J]. Sankhya A, 1996, 58:48-56.
  • 8Ebrahimi N, Kirmani S N U A. Some results on ordering of survival functions through uncertainty[J]. Statist Probab Lett, 1996, 29:167-176.
  • 9Wang F, Vemuri B C, Rao M,et al. Cumulative residual entropy, a new measure of information and its application to image alignment[J]. IEEE in Conf Computer Vision,2003, 1:548-553.

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部