期刊文献+

一种自适应Chirplet分解方法及在故障诊断中应用 被引量:2

An adaptive Chirplet decomposition method and its application to the fault diagnosis
下载PDF
导出
摘要 提出了一种自适应Chirplet信号分解过程中的参数优化估计方法,该方法首先利用最大投影分解原理结合分数阶傅立叶变换和拟牛顿方法进行参数估计,然后利用最大期望方法,进一步进行参数的优化。将提出的方法与传统的时频分析方法如短时傅立叶谱图,Wigner分布进行对比分析,仿真结果表明,提出的方法具有很高的参数估计精度、很高的时频图分辨率和抗噪能力。说明了本文提出的方法中引入EM算法的必要性。又将提出的方法应用到轴承的故障诊断中,实验结果表明,提出的自适应Chirplet分解方法是非常有效的。 A new approach of adaptive Chirplet parameter optimization is presented. In the proposed approach, via a combination of fractional Fourier transform and quasi-Newton method, the maximum projective decomposition is used to estimate the parameters. Then, the expectation maximization algorithm is used to refine the results. This method is compared with traditional time-frequency analysis methods, such as short-time Fourier spectrum and Wigner distribution, the simulation results show that this method can obtain more accurate estimation, finer time-frequency resolution and denoising capability, and the simulation also illustrate the necessity of EM. At last, the proposed method is applied to the fault diagnosis of bearing, the experiment results demonstrate that the proposed method is efficient.
出处 《振动工程学报》 EI CSCD 北大核心 2007年第6期606-612,共7页 Journal of Vibration Engineering
基金 国家自然科学基金(50675209) 山东省自然基金项目(Y2005A09) 河南省杰出人才创新基金(0621000500)
关键词 Chirplet分解 参数估计 最大期望方法 故障诊断 Chirplet decomposition parameter estimation expectation maximization algorithm [ault diagnosis
  • 相关文献

参考文献7

  • 1Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries[J]. IEEE Transaction on Signal Processing, 1993, 41(12): 3397-3415.
  • 2Qian S, Chen D. Signal representation using adaptive normalized Gaussian functions[J]. Signal Processing, 1994, 36(1): 1-11.
  • 3Bultan A. A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1999,47(3) :731-745.
  • 4Guo Xin, Sun Hongbo, Tat Soon Yeo. Transient interference excision in over-the-horizon radar using adaptive time-frequency analysis [J]. IEEE Transactions on Geoscience and Remote Sensing ,2005,43(4): 722-735.
  • 5Cui Jie, Wong Willy. The adaptive chirplet transform and visual evoked potentials[J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (7): 1378-1384.
  • 6O'Neill J C,Flandrin P. Chirp hunting[A]. Proceedings of IEEE-SP International Symposium on Timefrequency Time-scale Analysis[C]. Pittsburgh, USA, 1998. 425-428.
  • 7Bearing data Center. http://www. eecs. ewru. edu/ laboratory/bearing.

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部