摘要
目的从参数估计、稳健性质、回归诊断应用等方面介绍基于广义秩次的一类稳健回归分析方法—R和GR估计。方法在SAS的IML模块下模拟其对非正态误差分布表现、正态误差下的估计效率并进行实例分析。结果误差为cauchy分布时,R估计优于LS估计,X空间存在离群值时,GR估计优于R和LS估计,误差为正态分布时,R与CR估计效率达95%。结论R和GR估计为是一种估计效率较高的稳健回归方法,其中GR估计可同时避免X和Y空间离群点。
To explore the rank-based robust regression, R and GR estimator with their estimation methods, robustness properties and regression diagnostics. Methods Using SAS/IML, Simulation study were carried on under normal and nonormal distribution, and an medical research application were given. Results When errors Cauehy distributed, R estimator performs better than LS, when outliers occur in X space, GR estimator performs better than R and LS, when errors normal distributed, estimation efficiency of GR and R achieve 95 % or so. Conclusion R and GR estimators are efficient and robust, and GR estimator can resists outliers form both X and Y space.
出处
《中国卫生统计》
CSCD
北大核心
2007年第6期565-568,共4页
Chinese Journal of Health Statistics
基金
山西省自然科学基金(20021031)
山西省高校青年学术带头人基金(晋教科2004-13)资助项目
关键词
稳健估计
回归诊断
秩次
Robust estimation
Regression diagnosis
Rank