期刊文献+

基于秩次的R类稳健回归

Rank-based Robust Regression Method
下载PDF
导出
摘要 目的从参数估计、稳健性质、回归诊断应用等方面介绍基于广义秩次的一类稳健回归分析方法—R和GR估计。方法在SAS的IML模块下模拟其对非正态误差分布表现、正态误差下的估计效率并进行实例分析。结果误差为cauchy分布时,R估计优于LS估计,X空间存在离群值时,GR估计优于R和LS估计,误差为正态分布时,R与CR估计效率达95%。结论R和GR估计为是一种估计效率较高的稳健回归方法,其中GR估计可同时避免X和Y空间离群点。 To explore the rank-based robust regression, R and GR estimator with their estimation methods, robustness properties and regression diagnostics. Methods Using SAS/IML, Simulation study were carried on under normal and nonormal distribution, and an medical research application were given. Results When errors Cauehy distributed, R estimator performs better than LS, when outliers occur in X space, GR estimator performs better than R and LS, when errors normal distributed, estimation efficiency of GR and R achieve 95 % or so. Conclusion R and GR estimators are efficient and robust, and GR estimator can resists outliers form both X and Y space.
出处 《中国卫生统计》 CSCD 北大核心 2007年第6期565-568,共4页 Chinese Journal of Health Statistics
基金 山西省自然科学基金(20021031) 山西省高校青年学术带头人基金(晋教科2004-13)资助项目
关键词 稳健估计 回归诊断 秩次 Robust estimation Regression diagnosis Rank
  • 相关文献

参考文献8

  • 1王彤,何大卫.对稳健回归尺度参数估计的一种改进[J].数学的实践与认识,2005,35(2):106-109. 被引量:3
  • 2Jaeckel LA. Estimating Regression Coefficients by Minimizing The Dispersion of The Residuals. The Annals of Mathematical Statistics, 1972, 43, 1449-1458.
  • 3Draper D. Rank-Based Robust Analysis of Linear Models. Statistical Science, 1988, 3,239-271.
  • 4Tableman M. Bounded-Influence Rank Regression :A One-Step Estimator Based on Wilcoxon Scores. Journal of the American Statistical ASsociation, 1990,85,508-158.
  • 5Naranjo JD, Hettmansperger TP. Bounded Influence Rank Regression. Journal of the Royal Statistical Society, B, 1994, 209-220.
  • 6Wilcox RR. Introduction to Robust Estimation and Hypothesis Testing. New York:Aedemie press, 1997.
  • 7Hettmansperger TP, Mckean JW. Robust nonparametrlc statistical methods. New Yark:John Wiley & Sons, 1997.
  • 8Woodruff DL, Rocke DM. Heuristic Search Algorithms for the Minimum Volume Ellipsoid. American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America, 1993, 2, 1,69-95.

二级参考文献10

  • 1Rousseeuw P J. A robust scale estimator based on the shortest half[J]. Statistica Neerlandica, 1988, 42: 103-116.
  • 2Hossjer O, Croux C, Rousseeuw P J. Asymptotics of generalized S-estimators [J]. Journal of Multivariate Analysis, 1994, 51: 426-449.
  • 3Croux C, Rousseeuw P J. Time-eficient algorithms for two highly robust estimators of scale[J]. Computational Statistics, 1992, 1: 411-428.
  • 4Bickel J L, Lehmann E L. Estimates of loccation based on rank test[J]. Annals of Mathematical Statistics, 1963,34: 598-611.
  • 5Lindsay B G. Efficiency versus robustness: the case for minimum Hellinger distance and related methods[J]. The Annals of Statistics, 1994, 22: 1081-1114.
  • 6Hampel F R, Ronchetti E M, Rousseeuw P J, Stahel W A. Robust Statistics: The Approach Based on Influence Function[M]. 1986, New York: John Wiley & Sons.
  • 7Hampel F R. The influence curve and its role in robust estimation[J]. Journal of American Statistical Association,1974, 69: 383-393.
  • 8Huber P J. Robust Statistics[M]. New York, John Wiley & Sons, 1981.
  • 9Rousseeuw P J, Croux C. Alternatives to the median absolute deviation[J]. Journal of American Statistical Association, 1993, 88: 1273-1283.
  • 10王彤,何大卫.LTS回归与M估计稳健性的比较[J].中国卫生统计,1999,16(2):79-81. 被引量:14

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部