期刊文献+

延性材料平面冲击波基本实验数值模拟的若干问题

ON SOME PROBLEMS IN NUMERICAL SIMULATIONS OF BASIC PLANAR SHOCK TESTS FOR DUCTILE MATERIALS
下载PDF
导出
摘要 假设屈服强度正比于剪切模量,分别构建了四种强度模型,并用于数值模拟Ly12铝的平面冲击波试验的质点速度剖面以及钨合金的平面冲击波试验的锰铜计应力记录.研究发现,基于Steinberg等的屈服强度模型比较符合实验.还对平面冲击波试验的层裂现象进行了简化的数值模拟,其中,采用了该文作者所提出的一种基于空穴聚集的层裂模型,该模型的特点是分别引入了层裂过程的早期及后期应力松弛方程. Four strength models are established in this paper by assuming a directly proportional dependence of yield strength upon shear modulus, and these models are applied to numerically simulate the profile of particle velocities of Ly12 aluminium under planar shock feats and the lateral stress in tungsten alloy recorded by the manganin gauge under the planar shock tests. It is found that the model based upon the Steinberg yield-strength is better agreement with the experimental data. Furthermore, the planar spalls occurring in planar shock tests of ductile metals are numerically simulated, too. using the previous moder on spall phenomena based on void coalescence preposed by us. The feature of that model is to introduce different stress-relaxation equatious, respectively, in the early and litter phases of planar spalls.
出处 《固体力学学报》 EI CAS CSCD 北大核心 2007年第4期333-340,共8页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(10472048) 中国工程物理研究院冲击波与爆轰物理重点实验室项目(9140C6702020603)资助
关键词 平面冲击波试验 本构方程 层裂模型 数值模拟 planar shock test, constitutive model, planar spall, numerical simulation
  • 相关文献

参考文献35

  • 1Johnson G R,Cook W H. A constitutive model and data for metals subjected to large strains, high strainrates and high temperatures[C]. In: Proceedings of the Seventh International Symposium on Ballistics, Hague, The Netherlands, 1983,541-547.
  • 2Zerilli FJ, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61 1816-1825.
  • 3Steinberg D J, Cochran S G,Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics,1980, 51: 1498-1533.
  • 4Tonks D L. Deviatoric stresses and plastic strain rates in strong shock wave for six metals[Z]. LA 12641, uc-700 and uc704 1993.
  • 5Preston D L, Tonks D L,Wallace D C, Model of plastic deformation for extreme loading conditions[J], Journal of Applied Physics,2003, 93: 211-220.
  • 6Straub G K. Elastic shear modulus: fits to data and extrapolation to large compressions and negative pressure[Z]. LA-11806-MS, DE91 005996, 1990.
  • 7Yu Yu Ying, Tan Hua, Dai Cheng da, et al, Sound velocity and release behavior of shock-compressed Ly12 A1[J].Chinese Physics Letter, 2005, 22:1742-1745.
  • 8Millett J C F, Bourne N K, Rosenberg Z, et al. Shear strength measurements in a tungsten alloy during shock loading[J]. Journal of Applied Physics, 1999, 86: 6707-6709.
  • 9Curran D R, Seaman L, Shockey D A. Dynamic failure of solid[J]. Physics Reports Review Section Physics Letter, 1987, 147 (5-6): 253-388.
  • 10Thomason P F. A view on ductile fracture modeling [J]. Fatigue & Fracture of Engineering Material Structures, 1998,21 : 1105-1122.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部