期刊文献+

基于粒度计算的二级倒立摆模糊控制策略

Fuzzy Control Strategy of Double Inverted Pendulum Based on Granular Computing
下载PDF
导出
摘要 二级倒立摆系统是一个多变量、非线性、不稳定的快速系统,在对其进行传统的模糊控制时,由于多变量输入而容易造成'规则爆炸'.为解决这一问题,提出了基于粒度计算的二级倒立摆模糊控制策略.根据粒度空间结构,将误差相空间划分为不同的粒元,从而构成粗粒度层和细粒度层,在不同的粒度层设计不同的控制策略,即在粗粒度层次上采用模糊控制实现系统的鲁棒性;在细粒度层次上采用PID(Proportion-Integral-Derivative)控制对系统进行进一步微调,逐步求精,最终获得理想的控制性能.实验证明:该控制策略不仅可以解决模糊控制规则呈指数爆炸的问题,而且还可以兼顾倒立摆系统的快速性和准确性指标. Double inverted pendulum is a kind of multi-variable, nonlinear and fast system. When it is controlled by fuzzy controllers, ‘rule explosion' is caused by many inputs. To solve the problem, fuzzy control strategy is provided based on granular computing. According to the granular theory, error space is divided into different granular elements to constitute coarser granularity and finer granularity. Fuzzy control at the coarser level is adopted to realize robustness, while Proportional-Integral-Derivation (PID) control at the finer level to realize delicate adjustment. The simulations testify that the strategy is effective not only solving the problem of‘rule explosion’ , but also achieving the ideal performance of stable state and transient state. Key words:
出处 《中北大学学报(自然科学版)》 EI CAS 2007年第6期506-511,共6页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(60374029) 山西省访问学者基金资助项目(2004-18)
关键词 二级倒立摆 粒计算 商空间 模糊控制 double inverted pendulum granular computing quotient space fuzzy control
  • 相关文献

参考文献2

二级参考文献13

  • 1刘清,黄兆华.G-逻辑及其归结推理[J].计算机学报,2004,27(7):865-873. 被引量:28
  • 2Peters J.F. and Szczuka M.S., Rough Neurocomputing:A Survey of Basic Models of Neurocomputation, Proceedings of the Third International Conference on RSCTC' 2002,October 14-16,2002,Malvern, PA, USA, Springer, pp.308-315.
  • 3Lin T.Y.,Granular Computing on Binary Relations Ⅱ: Rough Set Representations and Belief Functions. Rough Sets in Knowledge Discovery 1, by L.Polkowski and A.Skowron. Physica-Verlag, Heidelberg, 1998.
  • 4Lin T.Y., Granular Fuzzy Sets: A View form Rough Set and Probability Theories, International Journal of Fuzzy Systems, Vol. 3, No.2, June 2001, pp.373-381.
  • 5Yao J.T. and Yao Y.Y., Induction of Classification Rules by Granular Computing, Proceedings of the Third International Conference on RSCTC' 2002, October 14-16,2002, Malvern,PA,USA, Springer, pp.331-338.
  • 6黄兆华.属性渐增式的决策规则挖掘算法[J].计算机科学,2004,31(10):192-194.
  • 7Zadeh L.A.,Fuzzy Logic = Computing with Words, IEEE Trans. On Fuzzy Systems, Vol.4, 1996, pp.103-111.
  • 8Zadeh L.A., Kacprzyk J. (Eds.), Computing with Words in Information/Intelligent Systems, Vol. 1-2, Studies in Fuzziness and Soft Computing Vol.30, Physica-Verlag, Heidelberg, 1999.
  • 9Zadeh L.A., A New Direction in AI: Toward a Computational Theory of Perceptions, AI Magazine, Vol. 22 No 1, 2001, pp. 73-84.
  • 10Pawlak Z.,Granularity of knowledge, Indiscernibility and rough sets, Proceedings of 1998 IEEE International Conference on Fuzzy Systems, 1998, pp. 106-110.

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部