期刊文献+

一阶常微分方程比较定理的高阶推广 被引量:2

The Extent of Comparison Theorems of Ordinary Differential Equations to the Higher Order
下载PDF
导出
摘要 比较定理是研究常微分方程解的属性的基本工具。但对于高阶的情况,现有的结论只给出了类似把解作为向量范数之间的比较。我们将一阶常微分方程的比较定理推广到高阶,从而给出了高阶常微分方程的解自身的大小的比较定理。 The comparison theorem for the ordinary differential equation is the basic tool to study the relevant solution's properties. However, in the higher order case, what we have now is only the theorem in comparing norms of the solutions. Therefore, we extend the comparison theorem to the higher order so that we can compare the solutions directly.
作者 梁淼
出处 《苏州市职业大学学报》 2007年第4期87-89,共3页 Journal of Suzhou Vocational University
关键词 比较定理 常微分方程 Kamke函数 comparison theorem ordinary differential equations Kamke functions
  • 相关文献

同被引文献14

  • 1Oldham K B, SpaNner J. The Fractional Calculus [M]. New York: Academic Press, 1974:46-60.
  • 2Podlubny I. Fractional. Differential Equations [M]. New York: Academic Press, 1999:41-136.
  • 3Kilbas A A, H. M. Srivastava, J. J. Trujillo. Theory and Application of Fractional Differential Equations [M]. New York: Elsevier, 2006:69-278.
  • 4Sabatier Jocelyn, Mozd Mathieu, FARGES Christophe. LMI stability conditions for fractional order systems [J ]. Computers and Mathematics with Applications, 2010, 59(5) : 1594-1609.
  • 5Fan Shengjun, Long Jiang. A Generalized Comparison Theorem for BSDEs and Its Applications [J]. Journal of Theoretical Probability, 2012, 25 (1) : 50-61.
  • 6Feng Yuqiang, Qu Guangjun. A new comparison theorem and the solvability of a third-order two-point boundary value problem [J]. Bull Malays Math Sci Soc 2011, 34(3): 435-444.
  • 7K.B.Oldham,J.Spaniner.The Fractional Calculus[M].Academic Press, New York, 1974.
  • 8I.Podlubny, Fractional Differential Equations[M].Academic Press, New York, 1999.
  • 9A.A.Kilbas, H.M.Srivastava and J.J.Trujillo.Theory and Application of Fractional Differential Equations[M].Elsevier, New York, 2006.
  • 10ocelyn 5abatier, Mathieu Moze, Christophe Farges.LMl stability conditions for fi-actional order systems[J].Computers and Mathematics with Applications 2010,59 (5) : 1594-1609.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部