期刊文献+

喹啉类生物碱的^(13)C-NMR波谱模拟

Modeling Spectrum Relationship of ^(13)C-NMR Simulationfor of Quinoline Alkaloids
下载PDF
导出
摘要 应用一种反映分子局部微环境描述子——原子电性相互作用矢量(vector of atomic electronegative interaction,AEIV)和原子杂化状态指数(atomic hybridation state index,AHSI)对喹啉类化合物的13种分子中的129个^(13)C-NMR谱建模模拟,应用多元线性回归方法得到定量结构波谱关系模型的复相关系数(R_(MM1))为0.988,标准偏差(SD_(MM1))为5.317.采用留一法交互检验结果R_(CV1)为0.987,SD_(CV1)为5.630.随机抽出两部分分子进行检验,得到的相关系数R_(MM2)为0.993,R_(MM3)为0.987.结果表明,使用AEIV和AHSI所建模型具有相当的预测能力和稳定性. Atomic electronegativity interaction vector (AEIV) and atomic hybridation state index (AHSI) were employed for quantitative structure spectroscopy relationship modeling of ^13C NMR chemical shifs of 129 carbon atoms in thirteen molecules of quinoline alkaloids. Through multiple linear regression (MLR), a model with the correlation coefficient (RMM,) of 0. 988 and the standard deviation (SDMM]) of 5. 317 could be achieved. Leave-one-out (LOO) method and cross-validation (CV) were combined to test the prediction ability of the model and the satisfied results with correlation coefficient (RCV1) of 0. 987 and standard deviations (SDCV1) of 5. 630 could be obtained, respectively. Furthermore, to test the validity of this model, two parts of the molecules were selected randomly as the test sets, with the correlation coefficients (RMM2and RMM3) of 0. 993 and 0. 987, respectively. The results suggest that the model based on AEIV and AHSI can be used to predict ^13C NMR chemical shifts of quinoline with satisfactory stability and predictability.
出处 《内江师范学院学报》 2007年第6期43-46,共4页 Journal of Neijiang Normal University
基金 国家"春晖计划"教育部启动基金(批准号:99-4-4+37:99-4-4+99-3-7) 重庆直辖市应用基础-研究基金(批准号:01-3-6) 霍英东基金[1998-7-6] 重大自主创新基金科技项目攻关课题(批准号:030506+040909)资助项目.
关键词 原子电性相互作用矢量 ^13C核磁共振波谱 定量结构波谱关系 atomic elect ronegativity interaction vector,^13C chemical shifts, NMR, quantitative structurespectroscopy relationship
  • 相关文献

参考文献4

二级参考文献36

  • 1邓芹英,丁丛梅,张维汉,林永成.艾纳香中黄酮化合物的研究[J].波谱学杂志,1996,13(5):447-452. 被引量:21
  • 2杜江 邹永明 等.四方蒿中黄酮类化学成分的研究[J].中国中药杂志,2000,25(9):536-537.
  • 3Grant D M, Paul E G. Carbon-13 magnetic resonance Ⅱ. Chemical shift data for the alkanes[J]. J A Chem Soc,1964, 86:2 984-2 990.
  • 4Lindeman L P, Adams J Q. Carbon-13 nuclear magnetic shifts for the resonance spectrometry. Chemical shifts for the paraffins through C9[J]. Anal Chem, 1971, 43: 1 245-1 252.
  • 5Clerc J T, Sommerauer H A. Minicomputer program based on additivity rules for the estimation of 13C NMR chemical shifts[J]. Anal Chim Acta, 1977, 95: 33-40.
  • 6Jurs P C, Ball J W, Anker L S, et al. Carbon-13 nuclear magnetic resonance spectrumsimulation[J]. J Chem Inf Comp Sci, 1992, 32: 272-278.
  • 7Nuzillard J M. Computer-assisted structure determination of organic molecules[J]. J Chim Phys-Chim Biol,1998, 95: 169-177.
  • 8Meiler J, Meusinger R, Will M. Fast determination of 13C NMR chemical shifts using artificial neural networks [J]. J Chem Inf Comp Sci, 2000, 40:1 169-1 176.
  • 9Hall L H, Kier L B. Electrotopological state index for atom types: a novel combination of electronic, topological, and valence state information[J]. J Chem Inf Comp Sci, 1995, 35:1 039-1 045.
  • 10于德泉 杨峻山 谢晶曦.分析化学手册第五分册:核磁共振波谱分析[M].北京:化学工业出版社,1989.832-834.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部