期刊文献+

铬原子束的激光冷却机制分析

Laser cooling mechanism of Chromium atomic beam
下载PDF
导出
摘要 利用近共振激光驻波场操纵中性原子实现纳米量级条纹沉积技术,是一种新型的研制纳米结构长度标准传递的方法,其中原子束的横向激光冷却是影响原子光刻技术的一个关键问题。以铬原子为例,对原子与激光冷却场的相互作用过程进行了分析和研究,并基于半经典理论的多普勒和亚多普勒激光冷却力的特性,给出了与冷却力相关参数的分析。仿真结果表明,在多普勒激光冷却力的作用下,铬原子束能够达到120μk的多普勒冷却极限,相应的横向速度为13.87 cm/s. The technology of laser-focused atomic deposition can be used to develop the nanostructure transfer standard of length. The atomic laser cooling is a key technique in atom lithography. A theoretical investigation of chromium atomic beam in optical traps is reported in this paper. The Doppler and sub-Doppler laser cooling forces are discussed and some characteristics of these forces are shown based on the semi-classical theory. The simulation results indicate that the atomic beam can be collimated by these laser cooling forces, especially by sub-Doppler laser cooling force and can reach the Doppler limit 120 μk,relative horizontal-speed 13.87 cm/s.
出处 《桂林电子科技大学学报》 2007年第6期456-460,共5页 Journal of Guilin University of Electronic Technology
关键词 多普勒力 亚多普勒力 原子光刻 Doppler force sub-Doppler force atom lithography
  • 相关文献

参考文献11

  • 1DRODOFSKY U, STUHLER J, BREZGER B, SCHULZE TH, DREWSEN M, PFAU T, MLYNEK J. Nonometerseale lithography with chromium atoms using light foree[J]. Microelectronic Engineering, 1997,35 (1) : 285-288.
  • 2MCCLELLAND J J. Atom optical properties of a standing-wave light field[J]. J. Opt. Soc, Am. B, 1995,12(10):1761-1768.
  • 3CAMPOSEO A, CERVELLI F, TANTUSSI F, LINDHOLDT M, FUSO F, ALLEGRINI M, ARMODO E. Atomic nanofabrication by laser manipulation of a neutral cesium beam[J]. Materials Science and Engineering C, 2003 , 23 (6) : 1087-1091.
  • 4MYSZKIEWICZ G, HOHLFELD J, TOONEN A J, VAN ETTEGER A F, SHKLYAREVSKII O I. Laser manipulation of Iron for nanofabrication[J]. Applied Physics Letters, 2004,85 (17):3842-3844.
  • 5BALYKIN V I, LETOKHOV V S. The possibility of deep laser focusing of an atomic beam into the A-region[J]. Opt. Commun. ,1987,64(2):151-156.
  • 6STEVEN J REHSE, KAREN M. BOCKEL, SIU AU LEE. Laser collimation of atomic gallium beam[J]. Physical Review A, 2004,69(5) :063404-1-5.
  • 7MCGOWAN R W, GILTNER D M, LEE S A, et al. Light force cooling, focusing and nanometer-scale deposition of aluminum atoms[J]. Opt. Lett. , 1995,20(24): 2535-2537.
  • 8FIORETTI A, CAMPOSEO A, TANTUSSI F. Atomic lithography with barium atoms [J]. Applied Surface Science, 2005, 248(4):196-199.
  • 9SANG EON PARK, HO SEONG LEE, TAEG YONG KWON, HYUCK CHO. Collimation of A beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity[J]. Optics Communications, 2001,192 (1) :57-63.
  • 10SMEETS B, HERFST R W, MAGUIRE L P, TESLIGTE E, VANDER STRATEN P, W. BEIJERINCK H C, VAN LEEUWEN K A H. Laser collimation of an Featomic beam on a leaky transition[J]. Applied Physics B, 2005,80(7):833-839.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部