期刊文献+

利用球面小波技术的几何压缩算法(英文)

Multi-resolution Analysis of Geometry Signals
下载PDF
导出
摘要 提出了一个用球面小波实现几何压缩的算法.对于给定的具有任意拓扑结构的零亏格三角形网格,算法首先将其在单位球面上进行全局参数化得到一个参数化网格,然后,将一个正多面体进行细分并将每一次细分所产生的新顶点投影到单位球面上,如此生成一个细分网格,于是,在参数域内位于细分网格顶点处对定义在参数网格表面上的各种几何信号进行重采样可得到新的具有细分结构的几何信号近似表示原始几何信号,以此满足球面细分小波对处理对象的细分结构要求,从而使得用球面细分小波对几何信号进行压缩得以实现. Given a manifold triangle mesh with zero genus and arbitrary topology, it is globally parameterized over the unit sphere S2 in E^3 firstly. At the same time, by subdividing an icosahedron and projecting all its vertices onto the unit sphere from the center,the authors can get a spherical triangle mesh with subdivision topology.Then they resample all signals defined on the surface of the original triangle mesh at the vertices of the spherical subdivision mesh and get a set of discrete spherical geometry signals with subdivision topology which can he processed by using spherical wavelet.
出处 《成都大学学报(自然科学版)》 2007年第4期298-304,共7页 Journal of Chengdu University(Natural Science Edition)
基金 Supported bythe National Nature Science Foundation of China(60602052).
关键词 几何压缩 球面小波 细分采样 网格参数化 digital geometry processing spherical wavelet subdivision re-meshing mesh parameterization
  • 相关文献

参考文献8

  • 1Eck M, DeRose T, Duchamp T, et al. Multiresolution analysis of arbitrary meshes[C]//In Proc of SIGGRAPH'95. Los Angeles: [s. n. ], 1995:173 - 182.
  • 2Floater M S. Parameterization and Smooth Interpolation in Geometric Modeling [ J ]. ACM Trans Computer Graphics, 1997, 8 (2) : 121 - 144.
  • 3Floater M S, Reimers M. Meshless Parameterization and Surface Reconstruction [J]. Computer Aided Geometric Design, 2001, 18(2) :77 - 92.
  • 4Floater M S. Parameterization and Smooth Approximation of Design[J]. Computer Aided Geometric Design, 1997, 14 (3) : 231 - 250.
  • 5Hormann K, Greiner G. MIPS: An Efficient Global Parameterization Method [C]//In Curve and Surface Design. Saint-Malo: Vanderbilt University Press, 2000 : 219 - 226.
  • 6Labsik U, Hormann K, Greiner G. Using Most Isometric Parameterizations for Remeshing Polygonal Surfaces [C]//In Proc of Geometric modeling and processing. Hong Kong: [ s. n. ], 2000: 220 - 228.
  • 7Shapiro A, Ayellet T. Polyhedron realization for shape transformation [ J ]. The Visual Computer, 1998,14(8 - 9 ) : 429 - 444.
  • 8Alexa M. Merging polyhedral shapes with scattered features [J]. The Visual Computer, 2000,16(1) :26 - 37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部