期刊文献+

基于HMM的核动力旋转机械故障诊断的研究

Research on Nuclear Power Rotating Machinery Fault Diagnosis Based on HMM
下载PDF
导出
摘要 隐Markov模型(HMM)已经证明是学习动态时间序列的概率模型的最广泛应用的工具之一,它可以使用一个隐变量来模拟系统的动态行为的变化。核动力旋转机械升速过程具有信息量大、信号非平稳、重复再现性不佳等特点,HMM很适合处理此类信号。将HMM引人到核动力旋转机械的故障诊断中,提出了一种基于HMM的故障诊断方法。 Hidden Markov models ( HMM ) have learning probability models of dynamics time series. proven to be one of the most widely used tools for HMM can model dynamical behavior variation existing in the system through a latent variable. There are a large amount non-statistical, worse reappearance signal in the nuclear power rotor run-up process. HMM is suitable to deal with these signals. A new fault diagnosis strategy based HMM was proposed in this paper.
出处 《噪声与振动控制》 CSCD 北大核心 2007年第6期73-75,79,共4页 Noise and Vibration Control
基金 "十一五"国防基础科研项目(编号:B0120060585)
关键词 振动与波 隐MARKOV模型 核动力旋转机械 故障诊断 动态时间序列 vibration and wave hidden Markov models ( HMM ) nuclear power rotating machinery fault diagnosis dynamical time series
  • 相关文献

参考文献6

二级参考文献13

  • 1蔡志强,吴雅,周笠,杨叔子.故障诊断与切削颤振的小波分析[J].华中理工大学学报,1993,21(1):88-94. 被引量:15
  • 2童进.隐Markov模型在旋转机械升降速过程故障诊断中的应用研究:博士学位论文[M].杭州:浙江大学,1999..
  • 3Rabiner L R. A tutorial on hidden markov models and selected applications in speech recognition [ J ]. Proceedings of the IEEE, 1989,77(2) :257 -286.
  • 4Atlas L, et al. Hidden markov models for monitoring maehining tool-wear[J]. IEEE International Conference on Acoustics.Speech, and Signal Processing, 2000.
  • 5Heck L P, McClellan J H. Mechanical system monitoring using HMMs[J]. IEEE International Conference on Acoustics,Speech, and Signal Processing, 1991.
  • 6Ying J, et al. A hidden markov model-based algorithm for online fault diagnosis with partial and imperfect tests[J]. IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications[ C ].SMCia/99, 1999.
  • 7Hasan O, et al. A new bearing fault detection and diagnosis scheme based on hidden markov modeling of vibration signals[J]. IEEE International Conference on Acoustics, Speech,and Signal Processing. 2001.
  • 8Hatzipantelis E, Murray A, Penman J. Comparing hidden Markov models with artificial neural network architectures for condition monitoring ,applications[ A ]. In : Fourth International Conference on Artificial Neural Networks[ C ]. 1995.
  • 9童进,吴昭同,严拱标.大型旋转机械升降速过程故障诊断研究[J].振动.测试与诊断,1999,19(3):193-195. 被引量:3
  • 10徐敏强,黄文虎,张嘉钟.旋转机械高速启动过程振动信号分析方法的研究[J].振动工程学报,2000,13(2):216-221. 被引量:37

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部