摘要
隐Markov模型(HMM)已经证明是学习动态时间序列的概率模型的最广泛应用的工具之一,它可以使用一个隐变量来模拟系统的动态行为的变化。核动力旋转机械升速过程具有信息量大、信号非平稳、重复再现性不佳等特点,HMM很适合处理此类信号。将HMM引人到核动力旋转机械的故障诊断中,提出了一种基于HMM的故障诊断方法。
Hidden Markov models ( HMM ) have learning probability models of dynamics time series. proven to be one of the most widely used tools for HMM can model dynamical behavior variation existing in the system through a latent variable. There are a large amount non-statistical, worse reappearance signal in the nuclear power rotor run-up process. HMM is suitable to deal with these signals. A new fault diagnosis strategy based HMM was proposed in this paper.
出处
《噪声与振动控制》
CSCD
北大核心
2007年第6期73-75,79,共4页
Noise and Vibration Control
基金
"十一五"国防基础科研项目(编号:B0120060585)
关键词
振动与波
隐MARKOV模型
核动力旋转机械
故障诊断
动态时间序列
vibration and wave
hidden Markov models ( HMM )
nuclear power rotating machinery
fault diagnosis
dynamical time series