期刊文献+

一类广义Logistic单种群时滞模型的Hopf分支 被引量:4

Hopf bifurcation of a general logistic equation with delay
下载PDF
导出
摘要 研究了一类广义Logistic单种群时滞生态模型dx/dt=rx(t)(1-c1xa(t)-c2x^β(t-τ))/(1+c3x^β(t-τ))的稳定性和Hopf分支问题.利用特征值理论和奇异摄动法,给出了系统唯一正平衡态的稳定性和Hopf分支存在条件,得到了分支周期解的近似解析表达式和周期解稳定性.通过若干实例的数值计算验证了定理条件和结论的可实现性. The dynamics of a general delayed logistic equation dx/dt=rx(t)(1-c1xa(t)-c2x^β(t-τ))/(1+c3x^β(t-τ))are investigated. The conditions under which a sequence of Hopf bifurcations occur at the positive equilibrium are obtained. The form of the approximate periodic solutions and the explicit algorithm for determining the stability of bifurcation periodic solutions are derived by using the singular perturbation method.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期97-102,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金(10071048).
关键词 广义Logistic模型 时滞 稳定性 HOPF分支 general logistic equation time delay stability Hopf bifurcation
  • 相关文献

参考文献8

  • 1HASSARD B,KAZARINOFF D,WAN Y. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press,1981.
  • 2GOPALSAMY K. Stability and oscillations in delay differential equations of population dynamics[M]. Dordrecht: Kluwer Academic Publishers, 1992.
  • 3王爱丽,陈斯养,王东保.广义Logistic单种群时滞生态模型的渐近性[J].兰州大学学报(自然科学版),2004,40(2):8-12. 被引量:4
  • 4SUN Cheng-jun,HAN Mao-an,LIN Yi-ping. Analysis of stability and Hopf bifurcation for a delayed logistic equation[J]. Chaos,Solitons & Fractals,2007,31(3): 672-682.
  • 5马知恩 周义仓.常微分方程定性与稳定性分析[M].北京:科学出版社,2001..
  • 6KUANG Y. Delay differential equations with applications in population dynamics[M]. Boston: Academic Press, 1993.
  • 7HALE 37 LUNEL S. Introduction to functional differential equations[M]. New York:Springer-Verlag, 1993.
  • 8STOKES A.On the stability of a limit cycle of autonomous functional differential equations[J]. Contributions to Differential Equations,1964,3:121- 140.

二级参考文献3

  • 1Yamada Y.On certain class of semi-linear Volterra diffusion equations[J].Math Anal Appl, 1982, 88(3): 433-451.
  • 2Lenhart S M, Travis C C .Global stability of a biological model with time delay [J].Proc Amer Math Soc, 1986,96(1): 75-78.
  • 3Kuang Yang.Delay Differential Equations with Applications in Population Dynamics[M].New York: Academic Press, 1993.

共引文献5

同被引文献35

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部