期刊文献+

面向协同过滤的真实偏好高斯混合模型 被引量:7

Real preference Gaussian mixture model for collaborative filtering
下载PDF
导出
摘要 针对协同过滤问题,提出了一种基于高斯混合的概率模型,称为真实偏好高斯混合模型.用户对项目的评分由三个因素决定:用户对项目主题和内容的真实偏好,用户的评分习惯,以及项目的公众评价.引入了两个隐含变量,分别用于描述用户类和项目类,用户和项目依概率可以同时属于多个类.模型包括离线建模过程和在线预测过程,在线预测可以在常数时间内完成.实验表明新模型的预测结果明显优于其他几种协同过滤算法. This paper presents a new probabilistic Gaussian mixture model for collaborative filtering, named real preference Gaussian mixture model ( RPGMM ). In RPGMM, the user' s vote to an item is determined by the user's real preference to the item, the rating style of the user, and the public praise of the item. There are two latent variables corresponding to classes of user and item. Each user or item may be probabilistically clustered to more than one groups. The parameters of the model can be estimated offline, and the online predictions can be computed in constant time. Empirical study has shown that our new model outperforms several other collaborative filtering models and algorithms remarkably.
作者 张亮 李敏强
出处 《系统工程学报》 CSCD 北大核心 2007年第6期613-619,共7页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70571057) 新世纪优秀人才支持计划资助项目(NECT-05-0253) 高等学校博士学科点专项科研基金资助项目(20020056047)
关键词 协同过滤 期望-最大化算法 潜在空间模型 collaborative filtering expectation-maximization algorithm latent space model
  • 相关文献

参考文献8

  • 1Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry[ J ]. Communications of the Association for Computing Machinery, 1992, 35 (12): 61-70.
  • 2Resnick P, Iacovou N, Suchak M, et al. Grouplens: An open architecture for collaborative filtering of netnews [ A ]. In: Proceedings of the Association for Computing Machinery Computer Supported Cooperative Work'94, Conference on Computer-Supported Cooperative Work[C]. Chapel Hill, North Carolina: 1994. 175-186.
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating “word of mouth” [ A ]. In : Proceedings of the Association for Computing Machinery Conference on Human Factors in Computer System' 95, Conference on Human Factors in Computing Systems[C]. New York: 1995,210-217.
  • 4Hofmann T. Latent Semantic Models for Collaborative Filtering [ J ]. ACM Transactions on Information Systems, 2004, 22 (1) : 89-115.
  • 5Luo Si, Rong Jin. Flexible mixture model for collaborative filtering[A]. In: Proceedings of the he Twentieth International Conference on Machine Learning[ C]. Washington DC. 2003, 704-711.
  • 6Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(1): 1-38.
  • 7Breese J, Hecherman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[ A ]. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence[C]. Madison, Wisconsin: 1998,43-52.
  • 8Pennock D, Horvitz E, Lawrence E, et al. Collaborative filtering by personality diagnosis: A hybrid memory- and model- based approach[A]. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence[C]. Stanford, California : 2000,473-480.

同被引文献103

引证文献7

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部