摘要
文献中指出:设f:X→Y是空间X到空间Y上的完备映射,如果X1在X中Lindel f,则f(X1)在Y中Lindelf,如果Y1在Y中Lindelf,则f-1(Y1)在X中Lindelf.本文主要讨论了1-σ仿紧,2-σ仿紧,3-σ仿紧,α-仿紧,Aull-仿紧,强亚紧,亚紧,cp-仿紧,弱cp-仿紧,它们也有这样的性质.
Reference is implied: f: X→Y is the prefect mapping from space X to space Y, if X1 is Lindelof in X, then f( X1 ) is lindelof in Y;if Y1 is lindelof, then f^-1(Y1) is lindelof in X. My article chiefly discussed that 1 - σ paracompact, 2 - σparacompact, 3-oparaeompaet,α- paraeompaet, Aull-paracompact, strongly matacompaet, mataeompaet, cp-paracompact, weakly cp - paracompact also have the properties.
出处
《吉林师范大学学报(自然科学版)》
2007年第4期82-83,共2页
Journal of Jilin Normal University:Natural Science Edition
关键词
1-σ仿紧
2-σ仿紧
3-σ仿紧
α-仿紧
Aull-仿紧
强亚紧
亚紧
cp-仿紧
弱cp-仿紧
1 - σ paracompact
2 - σ paracompact
3 - σ paracompact
α - paracompaet
Aull - paracompact
strong matacompaet
matacompact
cp - paracompact
weakly cp - paracompact