期刊文献+

混合流体对流运动的研究进展 被引量:2

The Progress of convection in fluid mixture
下载PDF
导出
摘要 混合流体对流是研究非平衡对流的稳定性、非线形动力学特性及湍流形成机理的典型模型之一.本文论述了混合流体对流的主要研究进展.在此基础上,对混合流体对流的数值模拟的研究提出了有待进一步研究和探讨的问题. Fluid mixture convection is one of the typical models for studying the stability, nonlinear dynamics of convection and the mechanism of forming turbulent flow. In this paper, based on discussing the main progress of convection in fluid mixture, the author puts forward the problem on further study of the numerical simulation of convection in fluid mixture.
作者 王涛
出处 《西南民族大学学报(自然科学版)》 CAS 2007年第6期1395-1399,共5页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 流体混合物 对流运动 数值模拟 高精度紧致差分算法 fluid mixture convection numerical simulation high-order compact finite difference scheme
  • 相关文献

参考文献25

  • 1CHANDRASEKAR S, Hydrodynamics and Hydromagnetic Stability[M].Oxford University Press,1961:1-100
  • 2CROSS M C. HOHENBERG P C. Pattern formation outside ofequilibrium[J].Reviews of Modem Physics,1993,65(3):998-1011.
  • 3NING LI-ZHONG .Traveling Wave Convection in Binary Fluid Mixtuer [M].Tokyo: A Bell and Howell Company, 1999: 1-138.
  • 4MOSES E, FINEBERG J, STEINBERG V.Multistability and confined traveling-wave patterns in a convecting binary mixture [J].Phys Rev 1987, A35: 2757-2760.
  • 5HARADA Y, MASUNO Y, SUGIHARA K.Traveling-wave convection in binary fluid mixture and sptio-temporal structure[J]. Vistas in Astronimg, 1993, D37:107-110.
  • 6FINEBEKG J,MOSES E, STGINBERG V.Spatially and temporally modulated traveling wavee pattern in convecting binary mixtures [J]. Phys Rev Lett,1988, 61(7):842-845.
  • 7KOLODNER P, SURKO C M.Weakly nonlinear traveling-wave convection [J].Phys Rev Lett,1988, 61(7): 838-841.
  • 8KOLODNER P, SURKO C and WILLIAMS H.Dynamics of traveling waves near the onset of convection in binary fluid mixtures[J]. Physica, 2002, 37:319-333.
  • 9DANIEL R, OHLSEN S Y. Yamamoto C M, SURKO. PAUL KOLODNER, Pinning and Long-Time-Scale Behavior in Traveling-Wave Convection [J], Journal of Statistical Physics, 1991, 64(5/6): 903-912
  • 10DOELMAN A.Traveling Waves in the Complex Ginzburg-Landau Equatlon[J] Nonlinear Science, 1993, 3: 225-266.

二级参考文献3

共引文献15

同被引文献29

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部